
Imprecise Probabilities Meet Partial Observability:
Game Semantics for Robust POMDPs

Eline M. Bovy1 , Marnix Suilen1 , Sebastian Junges1 and Nils Jansen1,2

1Radboud University, The Netherlands
2Ruhr-University Bochum, Germany

{eline.bovy, marnix.suilen, sebastian.junges}@ru.nl, n.jansen@rub.de

Abstract
Partially observable Markov decision processes
(POMDPs) rely on the key assumption that prob-
ability distributions are precisely known. Robust
POMDPs (RPOMDPs) alleviate this concern by
defining imprecise probabilities, referred to as un-
certainty sets. While robust MDPs have been stud-
ied extensively, work on RPOMDPs is limited and
primarily focuses on algorithmic solution meth-
ods. We expand the theoretical understanding of
RPOMDPs by showing that 1) different assump-
tions on the uncertainty sets affect optimal policies
and values; 2) RPOMDPs have a partially observ-
able stochastic game (POSG) semantic; and 3) the
same RPOMDP with different assumptions leads
to semantically different POSGs and, thus, differ-
ent policies and values. These novel semantics for
RPOMDPs give access to results for POSGs, stud-
ied in game theory; concretely, we show the exis-
tence of a Nash equilibrium. Finally, we classify
the existing RPOMDP literature using our seman-
tics, clarifying under which uncertainty assump-
tions these existing works operate.

1 Introduction
Partially observable Markov decision processes (POMDPs)
are the standard model for decision-making under stochas-
tic uncertainty and incomplete state information [Kaelbling et
al., 1998]. A common objective in a POMDP is for an agent
to compute a policy that maximizes the expected discounted
reward. While POMDPs have been studied extensively, a key
assumption planning methods for POMDPs rely on is that the
model dynamics, i.e., the transition and observation probabil-
ities, are precisely known. Under that assumption, it is known
that an optimal policy of a POMDP is the solution to a fully
observable infinite-state belief MDP [Kaelbling et al., 1998].

In the fully observable setting, Markov decision processes
(MDPs) [Puterman, 1994] have been extended to robust
MDPs (RMDPs) to account for an additional layer of un-
certainty around the probabilities that govern the model dy-
namics known as the uncertainty set. These RMDPs have
been studied extensively, in terms of their semantics [Iyen-
gar, 2005, Nilim and Ghaoui, 2005, Wiesemann et al., 2013],

efficient algorithms to solve specific classes of RMDPs [Be-
hzadian et al., 2021, Ho et al., 2021, Wang et al., 2023],
and their application in reinforcement learning [Jaksch et
al., 2010, Petrik and Subramanian, 2014, Suilen et al.,
2022, Moos et al., 2022].

Robust MDPs can be seen as games between the agent,
who aims to maximize their reward by choosing an action at
each state, and nature, who aims to minimize the agent’s re-
ward by selecting adversarial probability distributions from
the uncertainty set. As a consequence, RMDPs and zero-
sum stochastic games (SG) [Shapley, 1953, Gillette, 1957]
are closely related, see in particular [Iyengar, 2005, Section 5]
for a reduction from (finite horizon) RMDP to SG.

For RMDPs, two semantics exist for nature’s behavior
when encountering the same state and action twice. Static un-
certainty semantics require nature to always select the same
probability distribution, while dynamic uncertainty semantics
allow nature to make a new choice every time a state-action
pair is encountered. [Iyengar, 2005, Lemma 3.3] established
that for finite horizon and discounted infinite horizon reward
maximization in certain RMDPs, static and dynamic uncer-
tainty semantics coincide, meaning that for a given agent’s
policy, both semantics result in precisely the same value.

Extensions to robust POMDPs (RPOMDPs) exist [Os-
ogami, 2015, Chamie and Mostafa, 2018, Saghafian, 2018,
Suilen et al., 2020, Nakao et al., 2021, Cubuktepe et al.,
2021, Bovy, 2023], but primarily focus on algorithmic ap-
proaches to compute optimal policies. Notably, these algo-
rithms compute optimal policies under different implicit as-
sumptions on the semantics of RPOMDPs, particularly con-
cerning static and dynamic uncertainty.

Contributions. This paper sets out to clarify and expand
the theoretical understanding of RPOMDPs. Specifically, we
define semantics with associated value functions and poli-
cies for RPOMDPs under various assumptions on the un-
certainty. We explicitly define the semantics of RPOMDPs
via zero-sum two-sided partially observable stochastic games
(POSGs) [Delage et al., 2023]. Our key contributions are:

1. Uncertainty assumptions matter. We introduce a con-
tinuum of uncertainty assumptions for RPOMDPs called
stickiness. Stickiness determines when nature’s choices
for resolving the uncertainty become fixed. The two ex-
tremes, immediately and never, coincide with the static

and dynamic uncertainty semantics of RMDPs. We
show in Theorem 1 that, in contrast to RMDPs, these
two extremes no longer coincide for RPOMDPs. Specif-
ically, they may lead to different optimal values. More-
over, the order of play (whether the agent or nature
makes the first move) matters. We show that the differ-
ences in these assumptions can lead to significant differ-
ences in optimal values. We account for these results by
providing a new RPOMDP definition that explicitly ac-
counts for these uncertainty assumptions in Definition 3.

2. Robust POMDPs are POSGs. We provide a formal
POSG semantic for RPOMDPs with explicit stickiness
and order of play. We establish a direct correspon-
dence between policies of POSGs and RPOMDPs that
ensure equal values for both models (Theorem 2). More-
over, different uncertainty assumptions in the RPOMDP
lead to semantically different POSGs and hence explain
the result listed in Contribution 1. Finally, we use the
POSG semantics to prove the existence of Nash equilib-
ria, which we use in turn to prove the existence of opti-
mal values in finite horizon RPOMDPs (Theorem 3).

3. Classification of existing RPOMDP works. We pro-
vide a classification of existing RPOMDP literature into
our semantic framework (Section 5).

The extended version of this paper, with all the appendices,
can be found at [Bovy et al., 2024].

2 Preliminaries
A discrete probability distribution over a finite set X is a func-
tion µ : X → [0, 1] such that

∑
x∈X µ(x) = 1. For infinite

sets, we only consider finite probability distributions. That is,
for an infinite set X , a finite probability distribution over X is
a function λ : X → [0, 1] with finitely many x ∈ X.λ(x) ̸= 0
and

∑
x∈X λ(x) = 1. The set of all probability distributions

over X is denoted as ∆(X), and P(X) is the powerset of X .
By (X → Y), we denote the set of all functions f : X → Y ,
and f : X ↪→ Y for a partial function. The symbol ⊥ is used
for undefined. Finally, we use Currying to describe functions
that map to functions, e.g., f : X → (Y → Z) represents a
function that maps each x ∈ X to a function gx : Y → Z.

2.1 Markov Models
Definition 1 (POMDP). A partially observable Markov de-
cision process (POMDP) is a tuple ⟨S,A, T,R, Z,O⟩ where
S, A, Z are finite sets of states, actions, and observations,
respectively. T : S × A → ∆(S), R : S × A → R, and
O : S → Z are the transition, reward, and observation func-
tions, respectively.

This definition uses POMDPs with deterministic observa-
tions, in contrast to the more standard stochastic observation
functions [Kaelbling et al., 1998]. However, every POMDP
with stochastic observations can be transformed into such a
POMDP [Chatterjee et al., 2016]. For convenience, we some-
times write T (s, a, s′) for T (s, a)(s′).

A Markov decision process (MDP) is a POMDP where all
states are fully observable. We simplify the tuple definition
to ⟨S,A, T,R⟩ in the MDP case.

Paths and histories. A path in a (PO)MDP M
is a sequence of successive states and actions: τ =
⟨s0, a0, . . . , sn⟩ ∈ (S×A)∗×S such that T (si, ai, si+1) > 0

for all i ≥ 0. We denote the set of paths in M by PathsM .
The concatenation of two paths is written as τ ⊕ τ ′. A his-
tory in a POMDP is a sequence of observations and actions
observed from a path ⟨s0, a0, . . .⟩: h ∈ (Z × A)∗ × Z such
that h = ⟨O(s0), a0, O(s1), a1 . . .⟩.
Policies. A history-based stochastic policy1 is a func-
tion that maps histories to distributions over actions, that is,
π : (Z × A)∗ × Z → ∆(A). The policy π is determinis-
tic, or pure, if it only maps to single actions, and stationary
if its domain is Z, i.e., it only maps the current observation.
The set of all history-based stochastic policies is denoted by
Π and the set of all history-based deterministic policies by
Πdet. A history-based mixed policy is a probability distribu-
tion over the set of history-based deterministic policies, that
is, πmix ∈ ∆(Πdet) The set of all history-based mixed poli-
cies is denoted by Πmix. Throughout the rest of the text, un-
less otherwise mentioned, all policies are history-based , and
unless indicated by either det or mix, the (sets of) policies
are stochastic.

Values. We maximize the expected reward, either with a fi-
nite horizon K ∈ N (denoted fh) or in the infinite horizon
with a discount factor γ ∈ (0, 1) (denoted dih). We denote
these objectives by ϕ ∈ {fh, dih}. The value of a policy
π ∈ Π in a (PO)MDP for the objective ϕ is given by the
value function V π

ϕ , and the optimal value is V ∗
ϕ . The value of

a policy for either objective is [Spaan, 2012]:

V π
fh = E

[
K−1∑
t=0

rt | π

]
, V π

dih = E

[∞∑
t=0

γtrt | π

]
,

where rt is the reward collected at time t under policy π. The
optimal value V ∗

ϕ is defined as supπ∈Π V π
ϕ .

2.2 Robust MDPs
Robust MDPs extend standard MDPs by defining an uncer-
tainty set of probability distributions that a state-action pair
can map to instead of a single fixed and known distribution.
Let U be a finite set of variables, and define U ⊆ (U → R)
as the uncertainty set. Let U be non-empty, a robust MDP is
then defined as follows.

Definition 2 (RMDP). A robust MDP (RMDP) is a tuple
⟨S,A,T , R⟩ where S,A, and R are again states, actions, and
the reward function. T : U → (S×A → ∆(S)) is the uncer-
tain transition function, consisting of a possibly infinite set of
transition functions T : S × A → ∆(S), where every T ∈ T
is determined by a variable assignment (U → R) ∈ U .

Remark 1. The variable assignment U maps the variables to
R and not to [0, 1] as mapping to the reals gives more freedom
in defining the uncertainty set, allowing for more complicated
dependencies between transitions. The uncertain transition
function T ensures that all state-action pairs are mapped to
probability distributions.

1Also known as a behavioral strategy.

s1 s2

p
1− p

q
1− q

U1 = {p ∈ [0.1, 0.9], q ∈ [0.1, 0.9]}
U2 = {p ∈ [0.1, 0.4], q = 2p}

Figure 1: An example RMDP with two uncertainty sets.

Game interpretation. As already mentioned in the intro-
duction, we interpret RMDPs as games between the agent,
who selects actions through a policy π : (S × A)∗ × S →
∆(A), and nature, who uses its policy θ : (S×A×U)∗×S →
∆(U) to select variable assignments u ∈ U from the uncer-
tainty set to determine the probability distributions, such that
T is non-empty. That is, any variable selection u must yield
a valid probability distribution for all state-action pairs:

∀s ∈ S, a ∈ A.T (u)(s, a) ∈ ∆(S).

The sets of the agent’s and nature’s policies are again Π and
Θ, respectively. The sets of deterministic and mixed policies
are constructed analogously as for POMDPs.

The maximal value that a policy can achieve over all possi-
ble ways to resolve the uncertainty is defined for both objec-
tives, respectively, as

V ∗
fh = sup

π∈Π
inf
θ∈Θ

E

[
K−1∑
t=0

rt

]
, V ∗

dih = sup
π∈Π

inf
θ∈Θ

E

[∞∑
t=0

γtrt

]
.

It is often assumed that nature plays stationary and determin-
istic in RMDPs. Under certain conditions on the uncertainty
set, this assumption is non-restrictive as nature’s best pol-
icy falls within this class [Iyengar, 2005, Wiesemann et al.,
2013, Grand-Clément et al., 2023].
Remark 2. Our definition of RMDPs is more general than
common definitions: Most RMDP definitions assume a form
of independence in the uncertainty set between different
states (or actions), known as s- (or (s, a)-) rectangularity.
Our definition subsumes these rectangular RMDPs. While
rectangular RMDPs satisfy a saddle point condition, mean-
ing the sup inf may be reversed in the definition of V ∗

ϕ , this
has not been shown for RMDPs in general. Our result in
Theorem 3 shows that the saddle point condition holds for
RPOMDPs in general for finite horizon. This extends to
RMDPs using a fully observable observation function. We
refer to [Wiesemann et al., 2013] for a more standard defini-
tion of rectangularity and an overview of the computational
properties of rectangular RMDPs, and [Jansen et al., 2022]
for an overview on non-rectangular RMDPs.
Example 1. Figure 1 depicts a small RMDP together with
two possible uncertainty sets U1 and U2. In this RMDP,
the agent only has singleton choices, while nature chooses
variable assignments for p and q. Given an uncertainty set
and a variable assignment in that uncertainty set, for example,
u = {p 7→ 0.3, q 7→ 0.5} ∈ U1, we get a fully defined
transition function. U1 is an (s, a)-rectangular uncertainty
set since each variable influences the transition probabilities
in only one state-action pair. U1 could hence be split into two
independent uncertainty sets: U1 = {p ∈ [0.1, 0.9]} × {q ∈

[0.1, 0.9]}. In contrast, U2 is not (s, a)-rectangular, since the
value of q depends on p, so p influences transitions from state
s1 as well as from state s2.

Static and dynamic uncertainty. A prominent semantic
concern on RMDPs is whether nature must play consistently
when a state is repeatedly visited. Static uncertainty seman-
tics require nature to choose a single variable assignment
u ∈ U once-and-for-all, fixing all probability distributions
form the start. On the other hand, dynamic uncertainty se-
mantics allow nature to choose a new variable assignment in-
dependently each time a state is visited. In [Iyengar, 2005,
Lemma 3.3], it is shown that on (s, a)-rectangular RMDPs
with a finite horizon or discounted infinite horizon objective,
these semantics, and thus the values, coincide.
Remark 3. Although our use of variables in the transition
function is similar to, e.g., [Wiesemann et al., 2013], it is
not standard. Often, the transition function directly maps
to uncertainty sets, e.g., [Iyengar, 2005, Nilim and Ghaoui,
2005, Ho et al., 2018]. The use of variables has the following
benefits over directly mapping to uncertainty sets: (1) support
for various semantics, such as different forms of rectangular-
ity, without changing the signature of the uncertain transition
function T ; (2) it allows us to keep track of partial restric-
tion on nature’s choice, which is needed when moving to the
partially observable setting (Section 3.1).

3 RPOMDPs and Uncertainty Assumptions
In this section, we define a game-based framework for robust
POMDP semantics that can be instantiated by making differ-
ent uncertainty assumptions. Specifically, we incorporate two
key assumptions into our RPOMDP definition: stickiness and
order of play. Stickiness concerns the moment at which na-
ture must choose the values of the variables U and extends
static and dynamic uncertainty from RMDPs to the partially
observable setting. The order of play specifies whether the
agent or nature moves first. It determines the moment nature
observes the most recent agent action.

This section is structured as follows. We briefly discuss our
assumptions about partial observability to introduce notation
needed and then formally define RPOMDPs. Next, we clar-
ify how notions such as paths and histories carry over from
POMDPs and RMDPs to RPOMDPs. We briefly describe the
order-of-play assumption and provide a more elaborate dis-
cussion of stickiness in Section 3.1. Finally, in Section 3.2,
we discuss the optimal value of RPOMDPs under different
uncertainty assumptions and demonstrate that these assump-
tions matter, i.e., yield different optimal values (Theorem 1).

RPOMDPs. Analogous to RMDPs, we interpret
RPOMDPs as a game between the agent and nature.
To make our RPOMDP definition as general as possible,
we assume partial observability for both the agent and
nature. We factorize the observations into three parts: private
observations of agent and nature, respectively, and public
observations that both players observe. Hence, each player
obtains two observations in each state. For the remainder of
the paper, we use a and n to denote whether a set or function
belongs to the agent or to nature, respectively. Likewise, we

use • and ◦ to denote whether a set or function relates to
private or public observations.
Definition 3 (RPOMDP). A robust POMDP (RPOMDP)
is a tuple ⟨S,A,T , R, Za

• , Z
n
• , Z◦, O

a
• , O

n
• , O◦, stick, play⟩,

where S,A,T , and R are sets of states and actions, the un-
certain transition function, and the reward function, as in
RMDPs. The sets Za

• , Z
n
• , and Z◦ are the private observa-

tions for the agent, for nature, and the public observations,
respectively. Oa

• : S → Za
• , O

n
• : S → Zn

• , and O◦ : S → Z◦
are the observation functions belonging to the agent, nature,
and public observations. stick : U × Zn

• × Z◦ ×A → {0, 1}
is the stickiness function, and play ∈ {a, n} the order of play,
i.e., which player moves first.
As for POMDPs, we consider deterministic observations. We
show in Appendix B that RPOMDPs with stochastic or un-
certain observations can be rewritten in RPOMDPs with de-
terministic observations.
Paths and histories. A path through an RPOMDP M is a
sequence τ = ⟨s0, a0, u0, s1, . . . , sn⟩ ∈ (S × A ×U)∗ × S
that consists of environment states, agent actions, and nature’s
variable assignments u ∈ U , such that for all i > 0:

T (ui−1)(si−1, ai−1, si) > 0.

As before, we denote the set of paths in M by PathsM . A his-
tory is the observable fragment of a path for either the agent or
nature. The agent’s histories are sequences in Ha,M ⊆ (Za

•×
Z◦×A)∗×Za

• ×Z◦, observing the agent’s private and public
observations of the states and its own actions. Nature’s histo-
ries are sequences in Hn,M ⊆ (Zn

•×Z◦×A×U)∗×Zn
•×Z◦,

observing its private and public observations of the states, the
agent’s actions, and variable assignments u ∈ U that resolve
the uncertainty. The histories for the agent and nature are ob-
tained from a path by applying the relevant observation func-
tions, respectively, similar to POMDPs. We give an explicit
mapping in Appendix A.2.
Order of play. For any given path, both the agent and na-
ture must make a move. We consider turn-based games and
must, therefore, select who picks their move first2. We en-
code this information directly in the signature of the nature
policy below. We remark that after both players have made
their move, the resulting state is equivalent as we assume that
nature always observes the actions picked previously.
Policies. As with RMDPs, we denote the agent’s policies
by π ∈ Π and nature’s by θ ∈ Θ. Specifically, the
agent’s policies are defined as maps from the agent’s histo-
ries to distributions over actions π : Ha,M → ∆(A). Na-
ture’s policies are maps from nature’s histories and the last
agent action to finite distributions over variable assignments
θ : Hn,M × A → ∆(U). When nature moves first, the last
agent action is not available and therefore not part of nature’s
policy: θ : Hn,M → ∆(U). The sets of deterministic and
mixed policies are constructed analogously as for POMDPs
in Section 2.

2In our setting, the case that both players pick their actions si-
multaneously is equivalent to letting nature move first, as we as-
sume the agent never directly observes the selection of nature. See
[Kwiatkowska et al., 2022] for more information about simultane-
ous stochastic games.

3.1 Stickiness: Restricting Nature’s Choices
Stickiness describes whether nature’s choice at one point
should remain fixed (‘stick’) in the future3. The simplest in-
stances of stickiness are when nature’s choices never stick or
when they all stick from the start. If nature’s choices never
stick, so values never stick to variables, we say the RPOMDP
has zero stickiness. If nature’s choices stick from the start,
so values directly stick to all variables, we say the RPOMDP
has full stickiness. Zero and full stickiness correspond to dy-
namic and static uncertainty in RMDPs, respectively.

Zero and full stickiness are only the two extremes of
a spectrum of different stickiness types. In addition,
RPOMDPs admit partial types of stickiness, where nature
may have to fix variable values but can delay some choices
depending on the specific stickiness function. We now give
an intuitive example on stickiness before moving to the for-
mal definition. For explicit examples of stickiness, including
so-called observation-based stickiness, see Appendix C.
Example 2 (Stickiness). Consider the following drone de-
livery problem, naturally modeled as (R)POMDP. The agent
controls a drone that has to deliver packages. States encode
the drone’s location, actions are direction and speed adjust-
ments, and observations are location estimations. The tran-
sition probabilities represent the chance of reaching adjacent
locations. Different types of stickiness can model different
sources of uncertainty on those probabilities:

Full stickiness. The drone experiences an unknown drift
probability caused by, e.g., a dented blade. The agent must
account for this unknown but fixed probability.

Zero stickiness. Wind influences the probability of reach-
ing adjacent states. While predictable to a certain degree, a
margin of uncertainty will remain. As the wind changes over
time, the agent has to account for changing probabilities.

Partial stickiness. We need partial stickiness when na-
ture eventually has to commit to a probability, but not from
the start. Suppose we extend our problem with a municipal-
ity that has created no-fly zones and will install monitors in
these zones to detect violations. We encode the no-fly zones
in the state space to reason about the probability of the agent
being detected. Initially, the municipality will try out possi-
ble placements for their monitors. The probability of being
detected, hence, lies in an uncertainty set formed by the dif-
ferent placements of monitors. Once the placement of the
monitors is final, the probability of getting caught in a no-fly
zone becomes fixed. A partial stickiness function that returns
1 when observing a drone in a no-fly zone, fixing the number
of monitors at that point, captures such scenarios.

We allow partial stickiness to depend on what nature ob-
serves, i.e., its private observations Zn

• , public observations
Z◦, and the agent’s actions A.

Definition 4. The stickiness of an RPOMDP is a Boolean
function indicating whether nature’s choice of a value for
variable v ∈ U should remain fixed:

stick : U × Zn
• × Z◦ ×A → {0, 1}.

3The name follows from the idea that nature always chooses
values for all variables, but some values stick for the rest of time.
Whether a variable sticks is determined by the stickiness.

s1

s2

s3

s4

s5

s6

s7

s8

s9

R = 200

R = 0

R = 100

R = 0

R = 200

R = 100

R = 0

0.5

0.5

0.9

0.1

1

p

1− p

q

1− q

a

b
a

b

a

b

a

b

p ∈ [0.1, 0.9]

q ∈ [0.1, 0.9]

Figure 2: An RPOMDP where full and zero stickiness do not coin-
cide in their optimal value.

Below, we describe how we use the stick function to com-
pute restrictions on nature’s choices and, with that, define
valid nature policies.
Fixed variables and agreeing assignments. Depending on
the stickiness of the RPOMDP, past choices of nature may
restrict its future choices. Let U ↪→ denote the set of partial
variable assignments U ↪→ R. Let u⊥ ∈ U ↪→ be the totally
undefined variable assignment: ∀v ∈ U.u⊥(v) = ⊥. We
define a function fix : PathsM → U ↪→ such that fix(τ) defines
the partial variable assignment that remains fixed based on
the stickiness function. This function is inductively defined
as fix(sI) = ∅ = u⊥ for the initial path sI , and

fix(τ ⊕ ⟨a, u, s′⟩)(v) ={
u(v) if fix(τ)(v) undefined, v ∈ U stick(last(τ), a),

fix(τ)(v) otherwise,

using U stick(s, a) = {v | stick(v,On
•(s), O◦(s), a) = 1}

to denote the variables that stick. We can straightforwardly
lift the definition of fix to nature’s histories using

U stick
h (zn• , z◦, a) = {v | stick(v, zn• , z◦, a) = 1}.

Two partial functions agree if they assign equal values to all
defined inputs. We use UP(u) for the variable assignments
that agree with partial variable assignment u.
Valid paths, histories, and policies. Let τ =
⟨s0, a0, u0, s1, . . . , sn⟩ ∈ PathsM . For k < n, we de-
note the prefix τ0:k = ⟨s0, a0, u0, s1, . . . , sk⟩. A path is
valid, if for every k < n, uk ∈ UP(fix(τ0:k)). A history is
valid if it corresponds to some valid path. A nature policy is
valid if all variable assignments that nature randomizes over
given a history and action are in the set of variable assign-
ments that agree with the variable restrictions generated by
the history. That is, ∀hn ∈ Hn,∀a ∈ A,∀u ∈ U .

θ(hn, a)(u) > 0 =⇒ u ∈ UP(fix(hn)).

From here on, all paths, histories, and policies are assumed to
be valid.

3.2 The Value of an RPOMDP
Values. The values of an RPOMDP given agent policy
π ∈ Π and nature policy θ ∈ Θ for both the finite horizon

s1

R = 300

R = 0

R = 300

a

b

p

1− p

p

1− p

p ∈ [0.1, 0.9]

Figure 3: An RPOMDP where nature first and agent first semantics
do not coincide in their optimal value.

and discounted infinite horizon objective are

V π,θ
fh = E

[
K−1∑
t=0

rt | π, θ

]
, V π,θ

dih = E

[∞∑
t=0

γtrt | π, θ

]
.

Optimal values are defined as V ∗
ϕ = supπ∈Π infθ∈Θ V π,θ

ϕ .
To the best of our knowledge, it is as of yet unknown
whether such optimal values and their policies exist for every
RPOMDP. Various RPOMDP papers claim the existence of
an optimal value for their specific RPOMDP, but these results
do not extend to the general RPOMDPs we consider in this
paper [Osogami, 2015, Nakao et al., 2021]. We prove that the
optimal value for finite horizon exists for general RPOMDPs
in Theorem 3.

By changing the stickiness or order of play of an RPOMDP,
the optimal value may change:
Theorem 1 (Uncertainty assumptions matter). For an
RPOMDP M , let V ∗,M

fh denote its optimal value for the fi-
nite horizon. In general, RPOMDPs with different stickiness
functions, including static and dynamic uncertainty, may lead
to different optimal values. Furthermore, a different order of
play may also lead to different optimal values. Formally:

1. There exist RPOMDPs M1,M2 that only differ in their
stickiness functions, such that V ∗,M1

fh ̸= V ∗,M2

fh ,

2. There exist RPOMDPs M1,M2 that only differ in their
order of play, such that V ∗,M1

fh ̸= V ∗,M2

fh .

We sketch the proof here, for details see Appendix D.

Proof sketch. We construct explicit RPOMDPs and show that
the optimal values do not coincide. For the first point re-
garding stickiness, consider the finite horizon RPOMDP in
Figure 2. For zero stickiness, the value is 65 1

2 , with agent
policy π = { 7→ {a 7→ 1

3 , b 7→ 2
3}, 7→ {a 7→

2
3 , b 7→

1
3}} and nature policy θ = { 7→ {p 7→ 83

270 , q 7→
1
10}, 7→ {p 7→ _, q 7→ 1

3}}. For full stickiness, the
value is 66 2

3 , with agent policy π = { 7→ {a 7→
1
3 , b 7→ 2

3}, 7→ {a 7→ 7
10 , b 7→ 3

10} and nature pol-
icy θ = { 7→ {p 7→ 1

3 , q 7→ 1
3}}.

For the order of play, consider the finite horizon RPOMDP
in Figure 3. For the agent first, the value is 30, with nature
policy θ = {⟨ , a⟩ 7→ {p 7→ 0.1}, ⟨ , b⟩ 7→ {p 7→ 0.9}}
and any agent policy. For nature first, the value is 150, with
nature policy θ = { 7→ {p 7→ 0.5}} and agent policy π =
{ 7→ {a 7→ 0.5, b 7→ 0.5}}.

Note that the optimal nature policies in these two
RPOMDPs are deterministic. We show in appendix D that

deterministic policies suffice in these specific RPOMDPs due
to the linearity of the value function in the nature policies.
Furthermore, the RPOMDP we use to show that the order of
play matters is fully observable and non-rectangular. In Ap-
pendix D, we show that the order of play still matters under
some form of rectangularity.
Remark 4. For (s, a)-rectangular RMDPs, [Iyengar, 2005,
Theorem 2.2] shows that static and dynamic semantics in
RMDPs lead to the same optimal value. Iyengar establishes
that in (s, a)-rectangular RMDPs, memoryless policies are
sufficient for the agent. In response, nature may also play
memoryless, as there is no incentive for nature to change its
choice after its initial choice. As a consequence, zero and
full stickiness coincide. This statement does not apply to
RPOMDPs, where agents generally use memory. As shown
in the (s, a)-rectangular RPOMDP in Figure 2 and Theo-
rem 1, the optimal nature policy in this model’s zero stick-
iness case uses information from previous observations, re-
sulting in a smaller reward.

4 POSG Semantics for RPOMDPs
We formalize the underlying game of an RPOMDP as
a zero-sum two-sided partially observable stochastic game
(POSG) [Delage et al., 2023], which is more widely studied
than RPOMDPs. Our transformation allows us to carry over
results from POSGs to RPOMDPs. In particular, we prove
that our POSGs always have a Nash equilibrium for the finite
horizon objective, which shows that optimal values and agent
policies always exist in our finite horizon RPOMDPs.

Tracking fixed assignments. In our game, we explicitly
keep track of the fixed variable assignments u↪→. The update
function upd : U ↪→ ×U × Zn

• × Z◦ × A → U ↪→ updates the
restricted variables after each valid nature choice following
the stickiness of the RPOMDP M .

upd(u↪→, u, zn• , z◦, a)(v) =
{
u(v) if v ∈ U stick

h (zn• , z◦, a),

u↪→(v) otherwise.

By construction, recursively applying the update function on
a path τ yields fix(τ).

Definition 5. Given an (agent first) RPOMDP
⟨S,A,T , R, Za

• , Z
n
• , Z◦, O

a
• , O

n
• , O◦, stick, a⟩, we define

the POSG ⟨Sa,Sn,Aa,An, T ,R,Za,Zn,Oa,On⟩, with a
set Sa = S × U ↪→ of agent states, a set Sn = S × U ↪→ × A
of nature states, a finite set Aa = A of agent actions, and a
set An = U of nature actions. The observations are defined
as follows: Za = Za

• × Z◦ is the finite set of the agent’s
observations, and Zn = Zn

• × Z◦ × (A ∪ ⊥) the finite
set of nature’s observations. The transition, reward, and
observation functions are then defined as:

• T = T a ∪ T n, the transition function, where T a : Sa ×
Aa → Sn is the agent’s transition function, defined by
T a(⟨s, u↪→⟩, a) = ⟨s, u↪→, a⟩ ∈ Sn and T n : Sn ×An →
∆(Sa) is nature’s transition function, such that
T n(⟨s, u↪→, a⟩, u, ⟨s′, upd(u↪→, u,On

•(s), O◦(s), a)⟩) ={
T (u)(s, a, s′) if u ∈ UP(u↪→),
0 otherwise.

• R : Sa × Aa → R the reward function, given by
R(⟨s, u↪→⟩, a) = R(s, a). State-action pairs Sn × An

have zero reward.

• Oa : (Sa ∪ Sn) → Za the deterministic observations
function of the agent defined as:

Oa(s) =

{
⟨Oa

•(s
′), O◦(s

′)⟩ if s = ⟨s′, u↪→⟩ ∈ Sa,
⟨Oa

•(s
′), O◦(s

′)⟩ if s = ⟨s′, u↪→, a⟩ ∈ Sn.

• On : (Sa ∪ Sn) → Zn the deterministic observations
function of nature defined as:

On(s) =

{
⟨On

•(s
′), O◦(s

′),⊥⟩ if s = ⟨s′, u↪→⟩ ∈ Sa,
⟨On

•(s
′), O◦(s

′), a⟩ if s = ⟨s′, u↪→, a⟩ ∈ Sn.

Game behavior. This game starts in an Sa state consisting
of the initial state sI ∈ S of the RPOMDP and the totally
undefined variable assignment u⊥ ∈ U ↪→. At any agent state
⟨s, u↪→⟩, both players observe their private and public obser-
vations of state s. After the agent chooses their action a, the
game transitions deterministically to a nature state ⟨s, u↪→, a⟩.
Again, both players observe their private and public observa-
tions of state s, with which nature observes the agent’s last ac-
tion. Next, nature selects a variable assignment u ∈ UP(u↪→)
from the set of variable assignments that agree with na-
ture’s past choices and hence account for the stickiness of
the RPOMDP. Then the uncertain transition function T is re-
solved with u after which the game stochastically moves to
the next agent state ⟨s′, upd(u↪→, u,On

•(s), O
◦(s), a)⟩, where

s′ can be reached from s given action a and the resolved tran-
sition function.
Nature chooses first. The POSG above is defined for
RPOMDPs where the agent plays first, where play = a. As
nature can observe the agent’s action choice, it may use this
information to choose a transition function from the uncer-
tainty set. If we assume that nature plays first, this informa-
tion is not available yet; hence, the structure of the POSG
needs to be changed to reflect this. For the remainder of the
main paper, we focus on the case where the agent moves first,
i.e., RPOMDPs with play = a. Our results carry over to
RPOMDPs, where nature moves first. See Appendix E.
Paths and histories. A path in a POSG is a sequence
of successive states and actions that alternate between agent
and nature: ⟨sa0, aa0, sn0 , an0 , sa1, aa1, . . .⟩ ∈ (Sa × Aa × Sn ×
An)∗×Sa, A path is valid if ∀sai , aai , sni . T a(sai , a

a
i , s

n
i) > 0,

and ∀sni , ani , sai+1. T n(sni , a
n
i , s

a
i+1) > 0. The set of paths in

G is PathsG. In the POSGs we consider, players only ob-
serve their own actions. A history for the agent or nature
is a path mapped to their respective observations: the agent
only observes agent actions, and their histories are sequences
of the form ⟨Oa(sa0), a

a
0,Oa(sn0),Oa(sa1), a

a
1,Oa(sn1), . . .⟩ ∈

(Za ×Aa ×Za)∗ ×Za, while the histories of nature are se-
quences in (Zn × Zn × An)∗ × Zn. The sets of agent and
nature histories in G are Ha,G and Hn,G, respectively.
Policies and values. A policy for the agent in POSG G is
a function π : Ha,G → ∆(Aa), and a policy for nature is a
function θ : Hn,G × Zn → ∆(An). The sets of all agent and
nature policies in G are denoted by ΠG and ΘG, respectively.
The sets of deterministic and mixed policies are constructed
analogously as for POMDPs in Section 2. The value of a

POSG is the expected reward collected under both players’
policies π, θ:

V π,θ
fh = E

[
K−1∑
t=0

rt | π, θ

]
, V π,θ

dih = E

[∞∑
t=0

γtrt | π, θ

]
.

4.1 Correctness of the Transformation
In the following, we show the correctness of our transforma-
tion from RPOMDP to POSG. We do this by (1) constructing
bijections between paths and histories of an RPOMDP and its
POSG, (2) using these bijections to derive bijections between
the agent and nature policies for both RPOMDP and POSG,
and (3) concluding with an equivalence between the values
for both models. All proofs, including the explicit construc-
tion of all bijections, can be found in Appendix F.
Proposition 1 (Bijection between paths and histories). Let
M be an RPOMDP, and G the POSG of M . There exists a
bijection f : PathsM → PathsG and bijections between indi-
vidual players’ histories:

• Let Ha,M and Ha,G be the set of all agent histories
in M and G, respectively. There exists a bijection
fa,h : Ha,M → Ha,G.

• Let Hn,M and Hn,G be the set of all nature histo-
ries in M and G, respectively. There exists a bijection
fn,h : Hn,M → Hn,G.

Using the bijection between histories, we relate agent policies
ΠM with ΠG and nature policies ΘM with ΘG.
Proposition 2 (Bijection between policies). Let M be an
RPOMDP, and G the POSG of M . There exist bijections
fπ : ΠM → ΠG and fθ : ΘM → ΘG between the agent’s
and nature’s policies in M and G, respectively.

An agent RPOMDP policy πM ∈ ΠM and an agent POSG
policy πG ∈ ΠG are corresponding if πM maps to πG via
the bijection fπ , i.e., πG = fπ(πM). Similarly, a nature
RPOMDP policy θM and a nature POSG policy θG are cor-
responding if θG = fθ(θM). From Proposition 2 it then fol-
lows that for two corresponding agent policies and two corre-
sponding nature policies, the values of the RPOMDP and the
POSG coincide.
Theorem 2 (Equivalent values). Let M be an RPOMDP, and
G the POSG of M . Let πM ∈ ΠM , πG = fπ(πM) ∈ ΠG

be corresponding agent policies, and θM ∈ ΘM , θG =
fθ(θM) ∈ ΘG be corresponding nature policies. Then, their
values for the RPOMDP and POSG coincide:

V πM ,θM

ϕ = V πG,θG

ϕ .

By showing that there is a bijection between RPOMDP
and POSG policies and that the values coincide, we have
established that these POSGs form an operational model for
RPOMDP semantics.

4.2 Existence of Nash Equilibria
Using the RPOMDP to POSG transformation, we prove the
existence of optimal values and policies for the agent in an
RPOMDP for the finite horizon objective. That is, the exis-
tence of maximal values agent policies can achieve against all

nature policies, such that V ∗
fh = supπ∈Π infθ∈Θ E[

∑K−1
t=0 rt |

π, θ]. From Theorem 2, it follows that if the values V ∗
ϕ exist

in the POSG G of an RPOMDP M , they also exist in M .
The value V π,θ

ϕ of a POSG G is a Nash equilibrium, and
both players’ policies are Nash optimal, denoted π∗, θ∗, if
there is no incentive for either player to change their policy.
That is, for either objective ϕ ∈ {fh, dih} we have:

∀π ∈ ΠG.V π∗,θ∗

ϕ ≥ V π,θ∗

ϕ ∧ ∀θ ∈ ΘG.V π∗,θ∗

ϕ ≤ V π∗,θ
ϕ .

Since the uncertainty set is infinite, our POSGs do not meet
the standard requirements for a Nash equilibrium to exist [Pe-
ters, 2015, Fijalkow et al., 2023]. Yet, our POSGs exhibit
enough structure to show that a Nash equilibrium always ex-
ists for the finite horizon objective.

Theorem 3 (Existence of finite horizon Nash equilibrium).
Let M be an RPOMDP and G the POSG of M . For the fi-
nite horizon objective V π,θ

fh =
∑k−1

t=0 [rt | π, θ] we have the
following saddle point condition in G:

sup
π∈ΠG

inf
θ∈ΘG

V π,θ
fh = inf

θ∈ΘG
sup
π∈ΠG

V π,θ
fh . (1)

From Equation (1), the existence of a Nash equilibrium in G
follows immediately [Peters, 2015].

We sketch the proof here; for details see Appendix G.

Proof sketch. We show the existence of the Nash equilibrium
for our RPOMDPs by first defining a sufficient statistic (Ap-
pendix G.1). This statistic tracks histories and nature’s policy
and is an adaptation of the definition of [Delage et al., 2023].
We use the sufficient statistic to construct the state space of
a non-observable occupancy game (Appendix G.2) between
agent and nature. Additionally, we show that we can reason
about the optimal value and policies of the occupancy game,
and thus those of the POSG, with the sets of mixed agent
and nature policies instead of the sets of stochastic policies
(Appendix G.3). Using the sets of mixed policies, we show
that the constructed occupancy game is a semi-infinite con-
vex game, as defined by [Lopez and Vercher, 1986] (Ap-
pendix G.4). Finally, we show that our occupancy game
meets the conditions given by [Lopez and Vercher, 1986] for
the existence of a saddle point. From the existence of the sad-
dle point, the existence of the Nash equilibrium and an opti-
mal agent policy immediately follows [Peters, 2015].

Whether a Nash equilibrium exists in the POSG G for dis-
counted infinite horizon objective V π,θ

dih =
∑∞

t=0[γ
trt | π, θ]

or a saddle point condition that would imply this Nash equi-
librium remains an open problem.

Other semantic implications for RPOMDPs. To shed
light on the reason why two RPOMDPs that only differ in
either their stickiness or order of play can lead to different op-
timal values, we look at the structure of the POSGs of these
RPOMDPs. Specifically, the RPOMDP from Figure 2 with
either zero or full stickiness leads to the two POSGs depicted
in Figure 4. The key difference between these POSGs is that
in the zero stickiness case, every variable assignment by na-
ture leads to the same two successor states, while in the full

s1, {} s1, {},⊥

s2, {}

s3, {}

. . .

. . .

0.5

0.5

0.5

0.5

. . .

. . .

.

.

.

.

.

.

.

.

.

{p 7→ 0.1,
q 7→ 0.1}

{p 7→ 0.9, q 7→ 0.9}

s1, {} s1, {},⊥

s2, {p 7→ 0.1, q 7→ 0.1}

s3, {p 7→ 0.1, q 7→ 0.1}
.
.
.

s2, {p 7→ 0.9, q 7→ 0.9}

s3, {p 7→ 0.9, q 7→ 0.9}

. . .

. . .

. . .

. . .

0.5

0.5

0.5

0.5

. . .

. . .

.

.

.

.

.

.

.

.

.

{p
7→

0.1
,

q 7→
0.1

}

{p 7→
0.9,

q 7→
0.9}

Figure 4: First states of zero stickiness (top) and full stickiness (bot-
tom) POSGs of the RPOMDP in Figure 2.

Reference Stickiness Order of play

[Osogami, 2015] Zero Agent first
[Chamie and Mostafa, 2018] Zero Agent first
[Saghafian, 2018] Zero Agent first
[Nakao et al., 2021] Zero Agent first
[Suilen et al., 2020] Full Nature first
[Cubuktepe et al., 2021] Full Nature first

Table 1: Classification of existing RPOMDP literature.

stickiness case, any variable assignment by nature leads to
two unique successor states and thus an infinitely branching
POSG. A similar structural difference can be seen in the two
POSGs depicted in Figure 5, which show the difference in the
order of play for the RPOMDP in Figure 3.

5 Related Work
In this section, we first classify the existing RPOMDP liter-
ature into the different assumptions discussed in this paper,
and then we provide a general overview of the related work.

5.1 Classification of RPOMDP Methods
Table 1 provides an overview of RPOMDP solution methods
within our game semantics, specifically classifying the type
of stickiness and the order of play for these methods.

Note that in the table, full stickiness and nature first order
of play are always combined, as are zero stickiness and agent
first order of play. This can be explained by those combi-
nations being the most intuitive extensions of static and dy-
namic uncertainty to the partially observable setting. We also
remark that [Saghafian, 2018] defines their problem by one
fixed but unknown model that is chosen non-deterministically
from the start, implying full stickiness and nature first, but
their algorithmic solution method operates with zero sticki-
ness and agent first semantics.

5.2 Further Related Work
The connection between rectangular RMDPs and stochastic
games is well-established, see for instance [Iyengar, 2005, Xu

s1, {}

s1, {}, a

s1, {}, b

R = 300

R = 0

R = 0

R = 300

a

b

0.1

0.9

0.9

0.1

. . .

. . .

.

.

.

.

.

.

.

.

.

{p 7→ 0.1}

{p 7→ 0.9}

0.1

0.9

0.9

0.1

. . .

. . .

.

.

.

.

.

.

.

.

.

{p 7→ 0.1}

{p 7→ 0.9}

s1, {}

s1, {}, {p 7→ 0.1}

s1, {}, {p 7→ 0.9}

R = 300

R = 0

R = 300

R = 0

{p 7→ 0.1
}

{p 7→
0.9}

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

a

b

0.1

0.9

0.9

0.1

a

b

0.9

0.1

0.1

0.9

Figure 5: Agent first (top) and nature first (bottom) POSGs of the
RPOMDP in Figure 3.

and Mannor, 2010, Wiesemann et al., 2013]. Yet, a key dif-
ference is that in RMDPs, nature is typically assumed to play
stationary, as already mentioned in Section 2.2. This assump-
tion is common because it is either sufficient for nature to
play stationary or there are computational reasons. In SGs,
on the other hand, history-based policies, as we also use, are
common for both agent and nature. For a more elaborate dis-
cussion, see [Grand-Clément et al., 2023, Section 2.2]. Re-
cent work explores the connection between RMDPs and SGs
in more depth [Chatterjee et al., 2023].

For RPOMDPs, the connection with POSGs has also been
alluded to before. [Osogami, 2015] briefly mention zero-
sum games in their proof of convexity of the value function.
[Saghafian, 2018] draws a link to nonzero-sum games, as
they assume non-adversarial behavior for nature. [Rasouli
and Saghafian, 2018] states a correspondence between the
perfect Bayesian equilibrium in a zero-sum and the optimal
value and policies in their RPOMDPs. Finally, [Nakao et al.,
2021] reasons about their RPOMDPs via games as well, but
they assume the agent can observe nature’s earlier choices.

6 Conclusion
This paper provides a semantic study of RPOMDPs, i.e.,
the extension of RMDPs to the partially observable setting.
We demonstrate that semantic choices that are irrelevant on
RMDPs are important in RPOMDPs. We concretely provide
semantics expressed as partially observable stochastic games
and use this to derive novel results about the existence of Nash
equilibria. Finally, we categorize algorithms from the litera-
ture based on our semantic framework. For future work, we
aim to adapt solution methods for POSGs, like [Delage et al.,
2023], to solve RPOMDPs. We also plan to investigate the
existence of a Nash equilibrium in the infinite horizon case.

Acknowledgements
We would like to thank the anonymous reviewers for their
valuable feedback. This research has been partially funded by
the NWO grant OCENW.KLEIN.187, the NWO Veni grant
222.147 (ProMiSe), and the ERC Starting Grant 101077178
(DEUCE).

References
[Behzadian et al., 2021] Bahram Behzadian, Marek Petrik,

and Chin Pang Ho. Fast algorithms for L∞-constrained
s-rectangular robust MDPs. In NeurIPS, pages 25982–
25992, 2021.

[Bovy et al., 2024] Eline M. Bovy, Marnix Suilen, Sebastian
Junges, and Nils Jansen. Imprecise probabilities meet par-
tial observability: Game semantics for robust POMDPs.
CoRR, abs/2405.04941, 2024.

[Bovy, 2023] Eline M. Bovy. The Underlying Belief Model
of Uncertain Partially Observable Markov Decision Pro-
cesses. Master thesis, Radboud University, 2023.

[Chamie and Mostafa, 2018] Mahmoud El Chamie and Hala
Mostafa. Robust action selection in partially observable
Markov decision processes with model uncertainty. In
CDC, pages 5586–5591. IEEE, 2018.

[Chatterjee et al., 2016] Krishnendu Chatterjee, Martin
Chmelik, Raghav Gupta, and Ayush Kanodia. Optimal
cost almost-sure reachability in POMDPs. Artif. Intell.,
234:26–48, 2016.

[Chatterjee et al., 2023] Krishnendu Chatterjee, Ehsan Kaf-
shdar Goharshady, Mehrdad Karrabi, Petr Novotnỳ, and
Ðord̄e Žikelić. Solving long-run average reward robust
MDPs via stochastic games. CoRR, abs/2312.13912, 2023.

[Cubuktepe et al., 2021] Murat Cubuktepe, Nils Jansen, Se-
bastian Junges, Ahmadreza Marandi, Marnix Suilen, and
Ufuk Topcu. Robust finite-state controllers for uncertain
POMDPs. In AAAI, pages 11792–11800. AAAI Press,
2021.

[Delage et al., 2023] Aurélien Delage, Olivier Buffet,
Jilles S. Dibangoye, and Abdallah Saffidine. HSVI can
solve zero-sum partially observable stochastic games.
Dynamic Games and Applications, 2023.

[Fijalkow et al., 2023] Nathanaël Fijalkow, Nathalie
Bertrand, Patricia Bouyer-Decitre, Romain Brenguier,
Arnaud Carayol, John Fearnley, Hugo Gimbert, Florian
Horn, Rasmus Ibsen-Jensen, Nicolas Markey, Benjamin
Monmege, Petr Novotný, Mickael Randour, Ocan Sankur,
Sylvain Schmitz, Olivier Serre, and Mateusz Skomra.
Games on graphs. CoRR, abs/2305.10546, 2023.

[GeoGebra GmbH, 2024] GeoGebra GmbH. Geogebra (on-
line), 2024. Available at https://www.geogebra.org.

[Gillette, 1957] Dean Gillette. Stochastic games with zero
stop probabilities. Contributions to the Theory of Games,
3:179–187, 1957.

[Grand-Clément et al., 2023] Julien Grand-Clément, Marek
Petrik, and Nicolas Vieille. Beyond discounted re-
turns: Robust Markov decision processes with average and
blackwell optimality. CoRR, abs/2312.03618, 2023.

[Ho et al., 2018] Chin Pang Ho, Marek Petrik, and Wolfram
Wiesemann. Fast bellman updates for robust MDPs. In
ICML, volume 80 of Proceedings of Machine Learning
Research, pages 1984–1993. PMLR, 2018.

[Ho et al., 2021] Chin Pang Ho, Marek Petrik, and Wolfram
Wiesemann. Partial policy iteration for L1-robust Markov
decision processes. J. Mach. Learn. Res., 22:275:1–
275:46, 2021.

[Iyengar, 2005] Garud N. Iyengar. Robust dynamic program-
ming. Math. Oper. Res., 30(2):257–280, 2005.

[Jaksch et al., 2010] Thomas Jaksch, Ronald Ortner, and Pe-
ter Auer. Near-optimal regret bounds for reinforcement
learning. J. Mach. Learn. Res., 11:1563–1600, 2010.

[Jansen et al., 2022] Nils Jansen, Sebastian Junges, and
Joost-Pieter Katoen. Parameter synthesis in Markov mod-
els: A gentle survey. In Principles of Systems Design, vol-
ume 13660 of LNCS, pages 407–437. Springer, 2022.

[Kaelbling et al., 1998] Leslie Pack Kaelbling, Michael L.
Littman, and Anthony R. Cassandra. Planning and acting
in partially observable stochastic domains. Artif. Intell.,
101(1-2):99–134, 1998.

[Kuhn, 1953] Harold W Kuhn. Extensive games and the
problem of information. Contributions to the Theory of
Games, 2(28):193–216, 1953.

[Kwiatkowska et al., 2022] Marta Kwiatkowska, Gethin
Norman, David Parker, Gabriel Santos, and Rui Yan.
Probabilistic model checking for strategic equilibria-
based decision making: Advances and challenges (invited
talk). In MFCS, volume 241 of LIPIcs, pages 4:1–4:22.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[Lopez and Vercher, 1986] M.A. Lopez and D.E. Vercher.
Convex semi-infinite games. Journal of optimization the-
ory and applications, 50(2):289–312, 1986.

[Moos et al., 2022] Janosch Moos, Kay Hansel, Hany Ab-
dulsamad, Svenja Stark, Debora Clever, and Jan Pe-
ters. Robust reinforcement learning: A review of foun-
dations and recent advances. Mach. Learn. Knowl. Extr.,
4(1):276–315, 2022.

[Nakao et al., 2021] Hideaki Nakao, Ruiwei Jiang, and
Siqian Shen. Distributionally robust partially observable
Markov decision process with moment-based ambiguity.
SIAM J. Optim., 31(1):461–488, 2021.

[Nilim and Ghaoui, 2005] Arnab Nilim and Laurent El
Ghaoui. Robust control of Markov decision processes with
uncertain transition matrices. Oper. Res., 53(5):780–798,
2005.

[Osogami, 2015] Takayuki Osogami. Robust partially ob-
servable Markov decision process. In ICML, volume 37
of JMLR Workshop and Conference Proceedings, pages
106–115. JMLR.org, 2015.

https://www.geogebra.org

[Peters, 2015] Hans Peters. Game Theory: A Multi-Leveled
Approach. Springer Texts in Business and Economics.
Springer, second edition, 2015.

[Petrik and Subramanian, 2014] Marek Petrik and Dhar-
mashankar Subramanian. RAAM: the benefits of robust-
ness in approximating aggregated MDPs in reinforcement
learning. In NIPS, pages 1979–1987, 2014.

[Puterman, 1994] Martin L. Puterman. Markov Decision
Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994.

[Rasouli and Saghafian, 2018] Mohammad Rasouli and
Soroush Saghafian. Robust partially observable Markov
decision processes. HKS Working Paper, RWP18-027,
2018.

[Saghafian, 2018] Soroush Saghafian. Ambiguous partially
observable Markov decision processes: Structural results
and applications. J. Econ. Theory, 178:1–35, 2018.

[Shapley, 1953] Lloyd S Shapley. Stochastic games.
Proceedings of the national academy of sciences,
39(10):1095–1100, 1953.

[Spaan, 2012] Matthijs T. J. Spaan. Partially observable
Markov decision processes. In Reinforcement Learning,
volume 12 of Adaptation, Learning, and Optimization,
pages 387–414. Springer, 2012.

[Suilen et al., 2020] Marnix Suilen, Nils Jansen, Murat
Cubuktepe, and Ufuk Topcu. Robust policy synthesis for
uncertain POMDPs via convex optimization. In IJCAI,
pages 4113–4120. ijcai.org, 2020.

[Suilen et al., 2022] Marnix Suilen, Thiago D. Simão, David
Parker, and Nils Jansen. Robust anytime learning of
Markov decision processes. In NeurIPS, 2022.

[Wang et al., 2023] Qiuhao Wang, Chin Pang Ho, and Marek
Petrik. Policy gradient in robust MDPs with global conver-
gence guarantee. In ICML, volume 202 of Proceedings of
Machine Learning Research, pages 35763–35797. PMLR,
2023.

[Wiesemann et al., 2013] Wolfram Wiesemann, Daniel
Kuhn, and Berç Rustem. Robust Markov decision
processes. Math. Oper. Res., 38(1):153–183, 2013.

[Xu and Mannor, 2010] Huan Xu and Shie Mannor. Distri-
butionally robust Markov decision processes. In NIPS,
pages 2505–2513. Curran Associates, Inc., 2010.

[Zalinescu, 2002] Constantin Zalinescu. Convex analysis in
general vector spaces. World scientific, 2002.

A Appendix Overview & Additional Preliminaries
These appendices contain additional results and proofs for the claims made in the main text. In particular, the appendices are
structured as follows:

• Appendix A contains an overview of key notation used and additional preliminaries (mostly around paths and histories)
used in subsequent appendices.

• Appendix B show how an arbitrary RPOMDP, with uncertainty in both transitions and observations, can be transformed
into an RPOMDP with deterministic state-based observations as we use throughout the main text inline with Definition 3.

• Appendix C defines observation-based stickiness and shows its workings in an example.
• Appendix D details the result from Theorem 1. That is, it shows that different forms of stickiness or a different order of

play can lead to different optimal values in RPOMDPs.
• Appendix E discussed the required changes to the constructions from the main paper when considering RPOMDPs with

nature first semantics.
• Appendix F contains the proof of Theorem 2 and the propositions it builds on.
• Appendix G contains the proof of Theorem 3.

A.1 Glossary of Key Notation

Notation Description

K ∈ N Finite horizon bound
γ Discount factor
ϕ ∈ {fh,dih} Objective, either finite-horizon (fh) or discounted infinite horizon (dih)
v ∈ U Variable v in the set of variables U
U ⊆ (U → R) Uncertainty set, defined as a set of admissible variable assignments u ∈ U
T (u) : S ×A → ∆(S) The uncertain transition function T instantiated by variable assignment u
U ↪→ Set of partial variable assignments U ↪→ R
u⊥ The completely undefined variable assignment
UP(u↪→) Set of variable assignments that agree with partial assignment u↪→
|τ | Horizon length of a path τ
|h| Horizon length of a history h
⊕ Concatenation of two tuples or paths
τ0:k Prefix of horizon length k of path τ
Ht The subset of histories of length t
H0:t The subset of histories of length 0 to t
π ∈ Π Stochastic agent policies
θ ∈ Θ Stochastic nature policies
πdet ∈ Πdet Deterministic agent policies
θdet ∈ Θdet Deterministic nature policies
πmix ∈ Πmix Mixed agent policies
θmix ∈ Θmix Mixed nature policies
πt, θt A policy defined on histories of length t (can be part of a larger policy π/θ)
π0:t, θ0:t A policy defined on histories of length 0 to t (can be part of a larger policy π/θ)
Πt,Θt The set of policies defined on histories of length t
Π0:t,Θ0:t The set of policies defined on histories of length 0 to t
a, n Agent and nature
z•, z◦ Private and public observations
x⃗ = ⟨x0, x1, . . . , xn−1⟩ ∈ Rn Vector

Table 2: Glossary of key notation.

A.2 Additional Preliminaries
This appendix contains additional definitions and concepts used throughout the rest of the appendices.

Rectangularity. Rectangularity concerns dependencies between transitions in the model. If all transitions originating from
different states are independent, we call the model and the uncertainty set s-rectangular. An s-rectangular uncertainty set U
can be rewritten as the Cartesian product of smaller, s related uncertainty sets:

U =×
s∈S

U s.

Similarly, if all transitions following different actions are independent, we call the model and the uncertainty set a-
rectangular [Wiesemann et al., 2013]. An a-rectangular uncertainty set U can be rewritten as the Cartesian product of smaller,
a related uncertainty sets:

U = ×
a∈A

Ua.

Combining these two, so if all transitions originating from different states and following from different actions are independent,
we call the model and the uncertainty set s, a-rectangular [Iyengar, 2005]. An s, a-rectangular uncertainty set U can be rewritten
as the Cartesian product of smaller, s and a related uncertainty sets:

U = ×
s∈S,
a∈A

U s,a.

If we do not have any known independencies, we call the model and the uncertainty set non-rectangular.

Belief. A belief is a distribution over the set of states ∆(S) representing the probability of being in a state given the history.
We compute a belief given an history by repeatedly applying the belief update [Kaelbling et al., 1998], starting from the initial
belief based on the initial state. Note that we adjusted the belief update to work with three observation functions.
Definition 6 (Belief update). Given a belief b, an agent action a, a nature action u, and observations za• , z

n
• , z◦, we compute

the successor belief b′ for each state s′ ∈ S as follows:

b′(s′) = Pr(s′ | b, a, u, za• , zn• , z◦)

=
Oa

•(s
′, za•)O

n
•(s

′, zn•)O◦(s
′, z◦)

∑
s∈S b(s) · T (u)(s, a, s′)∑

s′∈S Oa
•(s

′, za•)O
n
•(s

′, zn•)O◦(s′, z◦)
∑

s∈S b(s) · T (u)(s, a, s′)
.

We use the belief update in our proof of the existence of a Nash equilibrium in Appendix G.

Dirac distribution. A distribution is called Dirac if it assigns probability one to precisely one element. We use Dirac distri-
butions in our proof of the existence of a Nash equilibrium in Appendix G.

Graph-preserving Given an RPOMDP M = ⟨S,A,T , R, Za
• , Z

n
• , Z◦, O

a
• , O

n
• , O◦, stick, play⟩ with uncertainty set U , the

uncertainty set is called graph-preserving if all variable assignments preserve the underlying structure of the RPOMDP. In other
words, if a transition is possible given one variable assignment, it is possible given all variable assignment:

∀s, s′ ∈ S, ∀a ∈ A. (∃u ∈ U . T (u)(s, a, s′) = 0 =⇒ ∀u ∈ U . T (u)(s, a, s′) = 0) .

Convex set A subset X of a Euclidean space is convex if given any two elements in the set the line drawn between those two
elements is entirely contained in the set. Given 2 elements x0, x1 ∈ X and scalar α ∈ [0, 1] we have that:

αx0 + (1− α)x1 ∈ X.

As a result, a convex set has the property that any convex combination of its elements is again contained in that set. Given k

elements x0, x1, . . . , xk−1 ∈ X and k non-negative scalars λ0, λ1, . . . , λk−1 ∈ [0, 1] such that
∑k−1

i=0 λi = 1, we have that:
k∑

i=0

λixi ∈ X.

Joint histories. The joint history combines the agent and nature histories in a single sequence:

HM ⊆ (Za
• × Zn

• × Z◦ ×A×U)∗ × Za
• × Zn

• × Z◦,

HG ⊆ (Za ×Zn ×Aa ×Za ×Zn ×An)∗ ×Za ×Zn.

Neither player can observe the joint history. Given a joint history h ∈ HM of h ∈ HG, we use the superscripts a and n
to indicate the agent and nature observable parts of the history h. So we get ha ∈ Ha,M (or ∈ Ha,G) and hn ∈ Hn,M (or
∈ Hn,G). We use joint histories in Appendices F and G.

Paths to histories. The following six functions map paths to histories in the RPOMDP and POSGs. The sets of histories in
the RPOMDP and POSGs are constructed by applying these mappings to the sets of paths. Paths⋉ indicates the set of all path
segments, see Appendix F.
Definition 7 (Paths to joint histories in RPOMDPs).
Let OM,⋉ : PathsM,⋉ → HM,⋉ defined by:

OM,⋉(⟨s⟩) = ⟨Oa
•(s), O

n
•(s), O◦(s)⟩.

OM,⋉(⟨s, a, u⟩) = ⟨Oa
•(s), O

n
•(s), O◦(s), a, u⟩.

OM,⋉(⟨s, a, u⟩ ⊕ τM
′
) = OM,⋉(⟨s, a, u⟩)⊕OM,⋉(τM

′
).

Let OM : PathsM → HM defined by:

OM (⟨s⟩) = ⟨Oa
•(s), O

n
•(s), O◦(s)⟩.

OM (⟨s, a, u⟩) = ⟨Oa
•(s), O

n
•(s), O◦(s), a, u⟩.

OM (⟨s, a, u⟩ ⊕ τM
′
) = OM (⟨s, a, u⟩)⊕OM,⋉(τM

′
).

Definition 8 (Paths to agent histories in RPOMDPs).
Let Oa,M,⋉ : PathsM,⋉ → Ha,M,⋉ defined by:

Oa,M,⋉(⟨s⟩) = ⟨Oa
•(s), O◦(s)⟩.

Oa,M,⋉(⟨s, a, u⟩) = ⟨Oa
•(s), O◦(s), a⟩.

Oa,M,⋉(⟨s, a, u⟩ ⊕ τM
′
) = Oa,M,⋉(⟨s, a, u⟩)⊕Oa,M,⋉(τM

′
).

Let Oa,M : PathsM → Ha,M defined by:

Oa,M (⟨s⟩) = ⟨Oa
•(s), O

n
•(s), O◦(s)⟩.

Oa,M (⟨s, a, u⟩) = ⟨Oa
•(s), O◦(s), a⟩.

Oa,M (⟨s, a, u⟩ ⊕ τM
′
) = Oa,M (⟨s, a, u⟩)⊕Oa,M,⋉(τM

′
).

Definition 9 (Paths to nature histories in RPOMDPs).
Let On,M,⋉ : PathsM,⋉ → Hn,M,⋉ defined by:

On,M,⋉(⟨s⟩) = ⟨On
•(s), O◦(s)⟩.

On,M,⋉(⟨s, a, u⟩) = ⟨On
•(s), O◦(s), a, u⟩.

On,M,⋉(⟨s, a, u⟩ ⊕ τM
′
) = On,M,⋉(⟨s, a, u⟩)⊕OM,⋉(τM

′
).

Let On,M : PathsM → Hn,M defined by:

On,M (⟨s⟩) = ⟨On
•(s), O◦(s)⟩.

On,M (⟨s, a, u⟩) = ⟨On
•(s), O◦(s), a, u⟩.

On,M (⟨s, a, u⟩ ⊕ τM
′
) = On,M (⟨s, a, u⟩)⊕On,M,⋉(τM

′
).

Definition 10 (Paths to joint histories in POSGs).
Similarly, let OG,⋉ : PathsG,⋉ → HG,⋉ defined by:

OG,⋉(⟨⟨s, u↪→⟩⟩) = ⟨⟨Oa
•(s), O◦(s)⟩, ⟨On

•(s), O◦(s),⊥⟩⟩.
OG,⋉(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩) = ⟨⟨Oa

•(s), O◦(s)⟩, ⟨On
•(s), O◦(s),⊥⟩, a, ⟨Oa

•(s), O◦(s)⟩, ⟨On
•(s), O◦(s), a⟩, u⟩.

OG,⋉(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩ ⊕ τG
′
) = OG,⋉(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩)⊕OG,⋉(τG

′
).

Let OG : PathsG → HG defined by:

OG(⟨⟨s, u↪→⟩⟩) = ⟨⟨Oa
•(s), O◦(s)⟩, ⟨On

•(s), O◦(s),⊥⟩⟩.
OG(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩) = ⟨⟨Oa

•(s), O◦(s)⟩, ⟨On
•(s), O◦(s),⊥⟩, a, ⟨Oa

•(s), O◦(s)⟩, ⟨On
•(s), O◦(s), a⟩, u⟩.

OG(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩ ⊕ τG
′
) = OG(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩)⊕OG,⋉(τG

′
).

Definition 11 (Paths to agent histories in POSGs).
Similarly, let Oa,G,⋉ : PathsG,⋉ → Ha,G,⋉ defined by:

Oa,G,⋉(⟨⟨s, u↪→⟩⟩) = ⟨⟨Oa
•(s), O◦(s)⟩⟩.

Oa,G,⋉(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩) = ⟨⟨Oa
•(s), O◦(s)⟩, a, ⟨Oa

•(s), O◦(s)⟩⟩.

Oa,G,⋉(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩ ⊕ τG
′
) = Oa,G,⋉(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩)⊕Oa,G,⋉(τG

′
).

Let Oa,G : PathsG → Ha,G defined by:

Oa,G(⟨⟨s, u↪→⟩⟩) = ⟨⟨Oa
•(s), O◦(s)⟩⟩.

Oa,G(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩) = ⟨⟨Oa
•(s), O◦(s)⟩, a, ⟨Oa

•(s), O◦(s)⟩⟩.

Oa,G(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩ ⊕ τG
′
) = Oa,G(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩)⊕Oa,G,⋉(τG

′
).

Definition 12 (Paths to nature histories in POSGs).
Similarly, let On,G,⋉ : PathsG,⋉ → Hn,G,⋉ defined by:

On,G,⋉(⟨⟨s, u↪→⟩⟩) = ⟨⟨On
•(s), O◦(s),⊥⟩⟩.

On,G,⋉(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩) = ⟨⟨On
•(s), O◦(s),⊥⟩, ⟨On

•(s), O◦(s), a⟩, u⟩.

On,G,⋉(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩ ⊕ τG
′
) = On,G,⋉(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩)⊕On,G,⋉(τG

′
).

Let On,G : PathsG → Hn,G defined by:

On,G(⟨⟨s, u↪→⟩⟩) = ⟨⟨On
•(s), O◦(s),⊥⟩⟩.

On,G(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩) = ⟨⟨On
•(s), O◦(s),⊥⟩, ⟨On

•(s), O◦(s), a⟩, u⟩.

On,G(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩ ⊕ τG
′
) = On,G(⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩)⊕On,G,⋉(τG

′
).

Relevant histories. Since our nature policies are restricted to finite probability distributions, we can generate a finite subset
of all joint histories that possibly have a non-zero probability at time t given a nature policy θ up to time t. For simplicity, we
use the RPOMDP histories. In Appendix F we show that reasoning via POSG histories is equivalent.

Definition 13 (Relevant joint history). Given a deterministic policy θdet ∈ Θdet, rel : Θdet → P(HM) gives the set of joint
histories which the deterministic policy can reach.

rel(θdet) = {OM (⟨sI⟩)} ∪ {h⊕ ⟨a, u, za• , zn• , z◦⟩ ∈ HM | θdet(hn, a) = u ∧ h ∈ rel(θdet)}.

Where hn is the nature observable part of the joint history h.
Given a mixed policy θmix ∈ Θmix, rel : Θmix → P(HM) gives the set of joint histories which the mixed policy can reach.
This comes down to the histories that are relevant to one of the deterministic policies the mixed policy randomizes over.

rel(θmix) = {h ∈ HM | ∃θdet ∈ Θdet. θmix(θdet) > 0 ∧ h ∈ rel(θdet)}.

Given a stochastic policy θ ∈ Θ, rel : Θ → P(HM) gives the set of joint histories that the stochastic policy can reach.

rel(θ) = {OM (⟨sI⟩)} ∪ {h⊕ ⟨a, u, za• , zn• , z◦⟩ ∈ HM | θ(hn, a)(u) > 0 ∧ hn ∈ rel(θ)}.

Where hn is the nature observable part of the joint history h.

This construction generalizes to relevant nature histories, indicated by reln. We use the sets of relevant histories in our proof of
the existence of a Nash equilibrium in Appendix G.

Policy types As introduced in Section 2, stochastic policies map histories to (finite) distributions over actions. Mixed policies,
on the other hand, are (finite) distributions over deterministic policies, which in turn map histories to actions deterministically.
For convenience, we repeat all types of policies we consider below.
For RPOMDPs:

Stochastic:
Deterministic:

Mixed:

π : Ha,M → ∆(A),

πdet : Ha,M → A,

πmix ∈ ∆(Ha,M → A),

θ : Hn,M ×A → ∆(U),

θdet : Hn,M ×A → U ,

θmix ∈ ∆(Hn,M ×A → U).

And for POSGs:

Stochastic:
Deterministic:

Mixed:

π : Ha,G → ∆(Aa),

πdet : Ha,G → Aa,

πmix ∈ ∆(Ha,G → Aa),

θ : Hn,G ×Zn → ∆(An),

θdet : Hn,G ×Zn → An,

θmix ∈ ∆(Hn,G ×Zn → An).

We write ΠM ,ΠG,Πdet,M ,Πdet,G,Πmix,M , and Πmix,G for the stochastic, deterministic, and mixed agent policies in
RPOMDP and POSG models, respectively. Similarly, we write ΘM ,ΘG,Θdet,M ,Θdet,G,Θmix,M , and Θmix,G for the stochas-
tic, deterministic, and mixed nature policies in RPOMDP and POSG models, respectively. Note that we often omit the model
indication superscript when it is clear from context in which type of model we operate or the results are equivalent.
The set of deterministic policies can be viewed as a subset of both the set of stochastic and the set of mixed policies using only
Dirac distributions. The value function of a mixed policy is computed as follows:

V πmix,θmix

ϕ =
∑

πdet∈Πdet

{
πmix(πdet) ·

∑
θdet∈Θdet

θmix(θdet) · V πdet,θdet

ϕ

}
=

∑
πdet∈Πdet

∑
θdet∈Θdet

{
πmix(πdet) · θmix(θdet) · V πdet,θdet

ϕ

}
.

A.3 Nature first
Below, we define the same paths to histories mapping for the POSGs of nature first RPOMDPs. The changes to the paths and
histories are discussed in Appendix E.

Definition 14 (Paths to joint histories in POSGs).
Similarly, let OG,⋉ : PathsG,⋉ → HG,⋉ defined by:

OG,⋉(⟨⟨s, u↪→⟩, a′⟩) = ⟨⟨On
•(s), O◦(s), a

′⟩, ⟨Oa
•(s), O◦(s)⟩⟩.

OG,⋉(⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩) = ⟨⟨On
•(s), O◦(s), a

′⟩, ⟨Oa
•(s), O◦(s)⟩, u, ⟨On

•(s), O◦(s),⊥⟩, ⟨Oa
•(s), O◦(s)⟩, a⟩.

OG,⋉(⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩ ⊕ τG
′
) = OG,⋉(⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩)⊕OG,⋉(τG

′
).

Let OG : PathsG → HG defined by:

OG(⟨⟨s, u↪→⟩,⊥⟩) = ⟨⟨On
•(s), O◦(s),⊥⟩, ⟨Oa

•(s), O◦(s)⟩⟩.
OG(⟨⟨s, u↪→,⊥⟩, u, ⟨s, u↪→, u⟩, a⟩) = ⟨⟨On

•(s), O◦(s),⊥⟩, ⟨Oa
•(s), O◦(s)⟩, u, ⟨On

•(s), O◦(s),⊥⟩, ⟨Oa
•(s), O◦(s)⟩, a⟩.

OG(⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩ ⊕ τG
′
) = OG(⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩)⊕OG,⋉(τG

′
).

Definition 15 (Paths to agent histories in POSGs).
Similarly, let Oa,G,⋉ : PathsG,⋉ → Ha,G,⋉ defined by:

OG,⋉(⟨⟨s, u↪→⟩, a′⟩) = ⟨⟨Oa
•(s), O◦(s)⟩⟩.

OG,⋉(⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩) = ⟨⟨Oa
•(s), O◦(s)⟩, ⟨Oa

•(s), O◦(s)⟩, a⟩.

OG,⋉(⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩ ⊕ τG
′
) = OG,⋉(⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩)⊕OG,⋉(τG

′
).

Let Oa,G : PathsG → Ha,G defined by:

OG(⟨⟨s, u↪→⟩,⊥⟩) = ⟨⟨Oa
•(s), O◦(s)⟩⟩.

OG(⟨⟨s, u↪→,⊥⟩, u, ⟨s, u↪→, u⟩, a⟩) = ⟨⟨Oa
•(s), O◦(s)⟩, ⟨Oa

•(s), O◦(s)⟩, a⟩.

OG(⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩ ⊕ τG
′
) = OG(⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩)⊕OG,⋉(τG

′
).

Definition 16 (Paths to nature histories in POSGs).
Similarly, let On,G,⋉ : PathsG,⋉ → Hn,G,⋉ defined by:

OG,⋉(⟨⟨s, u↪→⟩, a′⟩) = ⟨⟨On
•(s), O◦(s), a

′⟩⟩.
OG,⋉(⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩) = ⟨⟨On

•(s), O◦(s), a
′⟩, u, ⟨On

•(s), O◦(s),⊥⟩⟩.

OG,⋉(⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩ ⊕ τG
′
) = OG,⋉(⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩)⊕OG,⋉(τG

′
).

Let On,G : PathsG → Hn,G defined by:

OG(⟨⟨s, u↪→⟩,⊥⟩) = ⟨⟨On
•(s), O◦(s),⊥⟩⟩.

OG(⟨⟨s, u↪→,⊥⟩, u, ⟨s, u↪→, u⟩, a⟩) = ⟨⟨On
•(s), O◦(s),⊥⟩, u, ⟨On

•(s), O◦(s),⊥⟩⟩.

OG(⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩ ⊕ τG
′
) = OG(⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩)⊕OG,⋉(τG

′
).

Since nature policies no longer depend on the last played agent action in a nature first model, the set of relevant joint histories
changes as follows:
Definition 17 (Relevant joint history). Given a deterministic policy θdet ∈ Θdet, rel : Θdet → P(HM) gives the set of joint
histories which the deterministic policy can reach.

rel(θdet) = {OM (⟨sI⟩)} ∪ {h⊕ ⟨a, u, za• , zn• , z◦⟩ ∈ HM | θdet(hn) = u ∧ h ∈ rel(θdet)}.

Where hn is the nature observable part of the joint history h.
Given a mixed policy θmix ∈ Θmix, rel : Θmix → P(HM) gives the set of joint histories which the mixed policy can reach.
This comes down to the histories that are relevant to one of the deterministic policies the mixed policy randomizes over.

rel(θmix) = {h ∈ HM | ∃θdet ∈ Θdet. θmix(θdet) > 0 ∧ h ∈ rel(θdet)}.

Given a stochastic policy θ ∈ Θ, rel : Θ → P(HM) gives the set of joint histories that the stochastic policy can reach.

rel(θ) = {OM (⟨sI⟩)} ∪ {h⊕ ⟨a, u, za• , zn• , z◦⟩ ∈ HM | θ(hn)(u) > 0 ∧ hn ∈ rel(θ)}.

Where hn is the nature observable part of the joint history h.

This construction, again, generalizes to relevant nature histories, indicated by reln. The sets of relevant histories for nature first
RPOMDPs are needed to adjust the proof of the existence of a Nash equilibrium in Appendix G to the nature first setting.

B From General RPOMDP to RPOMDP With Deterministic Observations
This appendix shows that our definition of RPOMDPs with deterministic state-based observations is non-restrictive.
Similar to in [Chatterjee et al., 2016], we can transform an RPOMDP with a stochastic or uncertain observation function into
an equivalent one with a deterministic observation function. Let M = (S,A,TO, R, Za

• , Z
n
• , Z◦) be an RPOMDP with an

uncertain transition observation function defined as TO : U → (S × A → ∆(S × Za
• × Zn

• × Z◦)). Note that this definition
combines the transition and observation functions into one to allow for more intricate dependencies. Multiple independent
functions can replace the TO function. This does not change the transformation below.
From the RPOMDP M , we construct a larger, equivalent, RPOMDP M ′ = (S′, A,T , R′, Za

• , Z
n
• , Z◦, O

a
• , O

n
• , O◦) with S′ =

S × Za
• × Zn

• × Z◦, adjusting the reward function according to the new state space R′ : S′ × A → R. We split the original
transition observation function TO in a transition function T : U → (S′ × A → ∆(S′)) and three separate deterministic
observation functions Oa

•
′ : S′ → Za

• ,On
•
′ : S′ → Zn

• , and O◦
′ : S′ → Z◦. The functions are then defined as follows:

• T (u)(⟨s, za• , zn• , z◦⟩, a, ⟨s′, za•
′, zn•

′, z◦
′⟩) = TO(u)(s, a, s′, za•

′, zn•
′, z◦

′),
• R′(⟨s, za• , zn• , z◦⟩, a) = R(s, a),
• Oa

•(⟨s, za• , zn• , z◦⟩) = za• ,
• On

•(⟨s, za• , zn• , z◦⟩) = zn• ,
• O◦(⟨s, za• , zn• , z◦⟩) = z◦.

The arbitrary RPOMDP M has now been transformed into an RPOMDP M ′ that satisfies our Definition 3, showing that our
assumption of deterministic state-based observations is indeed non-restrictive.

C Stickiness Examples
This appendix contains three examples of a stickiness function: zero, full, and observation-based stickiness.

C.1 Zero and Full Stickiness
As mentioned in Section 3.1, zero and full stickiness are the extremes of the spectrum of stickiness types where nature’s choices
never or always stick, respectively. We revisit the RMDP in Figure 1 in the main text and discuss the zero and full stickiness
interpretations of the model.

s1 s2

p
1− p

q
1− q

U1 = {p ∈ [0.1, 0.9], q ∈ [0.1, 0.9]}
U2 = {p ∈ [0.1, 0.4], q = 2p}

Figure 1: An example RMDP with two uncertainty sets.

Example 3 (Stickiness). Consider the RMDP in Figure 1 and uncertainty set U1. We interpret this RMDP as an RPOMDP
with full observability for both players. Regardless of the stickiness, at the start of the game, nature has to choose a variable
assignment u ∈ U1. Under full stickiness, the rest of the game is now determined, as nature can only choose the same values
for p and q as in the initial variable assignment. If we assume zero stickiness, then at the next state and all future states, whether
s1 or s2, nature can choose any new variable assignment u′ ∈ U1.

C.2 Observation-Based Stickiness
We allow a stickiness function to depend on what nature observes, i.e., its private observations Zn

• , public observations Z◦, and
the agent’s actions A. To define such stickiness functions, we denote for each variable v ∈ U the state-action pairs it influences
by vs,a : S ×A → {0, 1}.
An example of an observation-based stickiness function is:

∀v ∈ U, zn• ∈ Zn
• , z◦ ∈ Z◦, a ∈ A.

stick(v, zn• , z◦, a) = 1 ⇐⇒ ∃s ∈ S.On
•(s) = zn• ∧O◦(s) = z◦ ∧ vs,a(s, a) = 1.

Under observation-based stickiness, a variable only sticks if there is a possibility that it influenced the actual transition based
on the last observations and actions. This means that all variables that influence both a state with observations zn• , z◦ and the
chosen action a stick. The intuition behind observation-based stickiness is that nature only needs to optimize for the transitions
it might influence at that given point in time. Note that this stickiness does not take the entire history into account, so there can
still be restrictions on variables that nature knows cannot influence the actual transition, as can be seen in the discussion of the
right example below.

s1 s2a
a

p
1− p

q
1− q

U = {p ∈ [0.1, 0.9], q ∈ [0.1, 0.9]}

s1 s2a
a

p
1− p

q
1− q

Figure 6: Two example RPOMDPs with the same uncertainty set.

Example 4. Figure 6 depicts two RPOMDPs. For simplicity, these RPOMDPs have no private observations. Furthermore,
we interpret these RPOMDPs with the agent first semantics. Note that the left RPOMDP corresponds to the fully observable
RPOMDP interpretation of the RMDP in Figure 1. For both RPOMDPs, we have that:

ps,a(s1, a) = 1, ps,a(s2, a) = 0, qs,a(s1, a) = 0, qs,a(s2, a) = 1.

So variable p only influences transitions from state s1, and variable q only influences transitions from state s2. Like in Ex-
ample 3, in both RPOMDPs, nature has to choose a variable assignment u ∈ U at the start of the game. First, looking at

the left RPOMDP and assuming observation-based stickiness, the variable p becomes restricted after this initial choice, since
O◦(s1) = ∧ ps,a(s1, a) = 1, so stick(p,⊥, , a) = 1. Variable q remains unrestricted, as state s2, the only state that q
influences, has a different observation. As long as the agent remains in state s1, nature may choose different assignments for q.
Once the agent reaches state s2, whichever value it assigns to q next will stick, and from then on, the game is fully determined
as also with full stickiness.
Looking at the right RPOMDP, again assuming observation-based stickiness, both variables immediately become restricted
after the initial choice. p again becomes restricted because O◦(s1) = ∧ ps,a(s1, a) = 1, so we have stick(p,⊥, , a) = 1.
Now, since s2 has the same observation as s1, we have O◦(s2) = ∧ qs,a(s2, a) = 1, which gives us stick(q,⊥, , a) = 1.

D Uncertainty Assumptions Matter
In this appendix, we elaborate on the results established in Theorem 1 and its proof.

Theorem 1 (Uncertainty assumptions matter). For an RPOMDP M , let V ∗,M
fh denote its optimal value for the finite horizon. In

general, RPOMDPs with different stickiness functions, including static and dynamic uncertainty, may lead to different optimal
values. Furthermore, a different order of play may also lead to different optimal values. Formally:

1. There exist RPOMDPs M1,M2 that only differ in their stickiness functions, such that V ∗,M1

fh ̸= V ∗,M2

fh ,

2. There exist RPOMDPs M1,M2 that only differ in their order of play, such that V ∗,M1

fh ̸= V ∗,M2

fh .

In the following four subsections, we compare tuples of R(PO)MDPs which only differ in either the stickiness or the order of
play. The first two subsections focus on differences in the stickiness, and the latter two focus on differences in the order of play:

1. Full stickiness versus zero stickiness in an (s, a)-rectangular model (Appendix D.1).
2. Full stickiness versus observation-based stickiness versus zero stickiness in an a-rectangular model (Appendix D.2).
3. Agent first versus nature first in a simple model (Appendix D.3).
4. Agent first versus nature first in an a-rectangular full sticky model (Appendix D.4).

For each of the tuples of RPOMDPs, we first state the value functions given agent and nature policies. In principle, we use
the sets of mixed nature policies Θmix for computing the optimal value and policy, which are equivalent to the original sets of
stochastic policies, as shown in Appendix G.3. However, in three of the four RPOMDP tuples, we can consider deterministic
nature policies instead of mixed nature policies, as discussed in more detail in Appendix D.1. For legibility reasons, we switch
back to the stochastic policy notation when writing the optimal policy.
Given the value functions and the types of optimal policies, we used the 3D calculator of [GeoGebra GmbH, 2024] to search
for the optimal value. We plotted the value functions for finding the optimal agent and nature policies separately. In both cases,
we look for the policy values that optimize the worst-case scenario from the player’s perspective. Once we found the value that
both players can achieve regardless of the other player’s policy, we found the Nash equilibrium value and policies. The models
used for finding the optimal values and policies can be found at https://github.com/LAVA-LAB/RPOMDP_game_semantics_
value_functions.
The computed optimal values show that the optimal values differ between the RPOMDPs in the tuples. These tuples of
RPOMDPs therefore prove Theorem 1.
After the optimal value computation, we discuss the structural differences of the equivalent POSGs. Although the structural
differences between two POSGs do not ensure that they have a different optimal value, the differences do provide an intuition
in the cases where we know that the optimal values differ.

D.1 Stickiness Matters
We first revisit the RPOMDP in Figure 2 and show how we computed the optimal values to show that stickiness matters in
RPOMDPs.

s1

s2

s3

s4

s5

s6

s7

s8

s9

R = 200

R = 0

R = 100

R = 0

R = 200

R = 100

R = 0

0.5

0.5

0.9

0.1

1

p

1− p

q

1− q

a

b
a

b

a

b

a

b

p ∈ [0.1, 0.9]

q ∈ [0.1, 0.9]

Figure 2: An RPOMDP where full and zero stickiness do not coincide in their optimal value.

For notation purposes, we use the distinguishing second observation to identify the longer history inputs for policies where
needed. For π ∈ Π, we write π = π() and π = π(). For θ ∈ Θ of the full stickiness RPOMDP, we write

https://github.com/LAVA-LAB/RPOMDP_game_semantics_value_functions
https://github.com/LAVA-LAB/RPOMDP_game_semantics_value_functions

θ = θ(), and for θ ∈ Θ of the zero stickiness RPOMDP, we write θ = θ() and θ = θ(). Using this notation, we
can write the value function for the full stickiness RPOMDP M1 in Figure 2 as:

V M1

fh (π, θmix) =
∑

θdet∈Θdet

θmix(θdet) ·
(
0.5 · 0.9 ·

(
θdet, (p) · π (a) · 200 + (1− θdet, (p)) · π (b) · 100

)
+ 0.5 · 0.1 ·

(
θdet, (q) · π (b) · 200 + (1− θdet, (q)) · π (a) · 100

)
+ 0.5 ·

(
θdet, (q) · π (b) · 200 + (1− θdet, (q)) · π (a) · 100

))
And for the zero stickiness RPOMDP M2:

V M2

fh (π, θmix) =
∑

θdet∈Θdet

θmix(θdet) ·
(
0.5 · 0.9 ·

(
θdet, (p) · π (a) · 200 + (1− θdet, (p)) · π (b) · 100

)
+ 0.5 · 0.1 ·

(
θdet, (q) · π (b) · 200 + (1− θdet, (q)) · π (a) · 100

)
+ 0.5 ·

(
θdet, (q) · π (b) · 200 + (1− θdet, (q)) · π (a) · 100

))
.

We construct these value functions by following all possible paths leading to non-zero rewards. We combined some of the paths
to keep the formula manageable. The three bigger terms correspond to the three subparts of the RPOMDP in Figure 2 shown
in Figure 7. A multiplication corresponds to successive branches, whereas addition corresponds to parallel branches. Note that
we removed the paths leading to rewards of zero. Also note that in this case, we used the full stickiness theta. For the zero
stickiness theta, the history on which choices are based is different, but the multiplications, additions, and how we wrote down
the formula still correspond to the subparts below.

s1

s2

s4

s6

s7

R = 200

R = 1000.5

0.9

p

1− p

a

b

(a) Subpart of the RPOMDP responsible for 0.5 · 0.9 ·
(
θdet, (p) · π (a) · 200 + (1− θdet, (p)) · π (b) · 100

)

s1

s2

s5

s8

s9

R = 200

R = 100

0.5

0.1

q

1− q

b

a

(b) Subpart of the RPOMDP responsible for 0.5 · 0.1 ·
(
θdet, (q) · π (b) · 200 + (1− θdet, (q)) · π (a) · 100

)
s1

s3

s5

s8

s9

R = 200

R = 100

0.5

1

q

1− q

b

a

(c) Subpart of the RPOMDP responsible for 0.5 ·
(
θdet, (q) · π (b) · 200 + (1− θdet, (q)) · π (a) · 100

)
Figure 7: Representation of the split used in the construction of value function of the RPOMDP in Figure 2.

We show that we can reason with deterministic nature policies by showing that the value functions are linear in the deterministic
nature policies. Combining this with the convexity of the uncertainty sets, we show that any finite probability distribution over

the deterministic nature policies, i.e., any mixed nature policy, can be rewritten as another deterministic nature policy that is
contained in the policy set. We can, therefore, limit ourselves to searching for the optimal policy in the deterministic nature
policy set. We first prove the following lemma:
Lemma 1. Given the full stickiness and zero stickiness RPOMDPs M1 and M2 of Figure 2:

∀θmix ∈ Θmix,∃θdet ∈ Θdet,∀π ∈ Π. V M1

fh (π, θmix) = V M1

fh (π, θdet),

∀θmix ∈ Θmix,∃θdet ∈ Θdet,∀π ∈ Π. V M2

fh (π, θmix) = V M2

fh (π, θdet).

Proof. We focus on the full stickiness RPOMDP M1. The result for the zero stickiness RPOMDP M2 follows from the same
steps. Let θmix ∈ Θmix be an arbitrary mixed nature policy and π ∈ Π an arbitrary stochastic agent policy. Then, we can
compute the value as follows:

V M1

fh (π, θmix) =
∑

θdet∈Θdet

θmix(θdet) ·
(
0.5 · 0.9 ·

(
θdet, (p) · π (a) · 200 + (1− θdet, (p)) · π (b) · 100

)
+ 0.5 · 0.1 ·

(
θdet, (q) · π (b) · 200 + (1− θdet, (q)) · π (a) · 100

)
+ 0.5 ·

(
θdet, (q) · π (b) · 200 + (1− θdet, (q)) · π (a) · 100

))
.

Simplify:

=
∑

θdet∈Θdet

θmix(θdet) ·
(
90 · π (a) · θdet, (p) + 45 · π (b)− 45 · π (b) · θdet, (p)

+ 10 · π (b) · θdet, (q) + 5 · π (a)− 5 · π (a) · θdet, (q)

+ 100 · π (b) · θdet, (q) + 50 · π (a)− 50 · π (a) · θdet, (q)
)
.

By definition of probability distributions:
∑

θdet∈Θdet θmix(θdet) = 1, so we can move the terms depending only on π out of
the summation:

= 45 · π (b) + 5 · π (a) + 50 · π (a) +
∑

θdet∈Θdet

θmix(θdet) ·
(
(90 · π (a)− 45 · π (b)) · θdet, (p)

+ (10 · π (b)− 5 · π (a) + 100 · π (b)− 50 · π (a)) · θdet, (q)
)
.

Split the summation:

= 45 · π (b) + 5 · π (a) + 50 · π (a) +
∑

θdet∈Θdet

θmix(θdet) ·
(
(90 · π (a)− 45 · π (b)) · θdet, (p)

)
+

∑
θdet∈Θdet

θmix(θdet) ·
(
(10 · π (b)− 5 · π (a) + 100 · π (b)− 50 · π (a)) · θdet, (q)

)
.

Move the multiplication terms only depending on π out of the summations:

= 45 · π (b) + 5 · π (a) + 50 · π (a)

+ (90 · π (a)− 45 · π (b)) ·
∑

θdet∈Θdet

θmix(θdet) · θdet, (p)

+ (10 · π (b)− 5 · π (a) + 100 · π (b)− 50 · π (a)) ·
∑

θdet∈Θdet

θmix(θdet) · θdet, (q).

The uncertainty set U of M1 is convex. We, therefore, know:

∀u, u′ ∈ U ,∀α ∈ [0, 1]. αu+ (1− α)u′ ∈ U .

By definition of valid policies (Section 3.1), we know:

∀θdet ∈ Θdet,∀h ∈ Hn,∀a ∈ A. θdet(h, a) ∈ UP(fix(h)).

At the non-singleton point of choice for the full stickiness nature policies, i.e., history , fix() = ∅ = u⊥. We, therefore,
know:

∀θdet ∈ Θdet. θdet, ∈ UP(u⊥) = U .

So we can create nature policy θ′det for which:

θ′det, (p) =
∑

θdet∈Θdet

θmix(θdet) · θdet, (p),

θ′det, (q) =
∑

θdet∈Θdet

θmix(θdet) · θdet, (q).

Since at the only non-singleton point of choice, θ′det is a convex combination of elements of a convex set, we know that:

θ′det, ∈ U = UP(u⊥).

As all other choices are singletons, we have that:

∀h ∈ Hn,∀a ∈ A. θ′det(h, a) ∈ UP(fix(h)).

From which we can conclude that θ′det is a valid deterministic nature policy, i.e., θ′det ∈ Θdet. We continue by showing that
V M1

fh (π, θ′det) = V M1

fh (π, θmix) for an arbitrary agent policy π ∈ Π.

V M1

fh (π, θ′det) = 0.5 · 0.9 ·
(
θ′det, (p) · π (a) · 200 + (1− θ′det, (p)) · π (b) · 100

)
+ 0.5 · 0.1 ·

(
θ′det, (q) · π (b) · 200 + (1− θ′det, (q)) · π (a) · 100

)
+ 0.5 ·

(
θ′det, (q) · π (b) · 200 + (1− θ′det, (q)) · π (a) · 100

)
.

Simplify:

= 90 · π (a) · θ′det, (p) + 45 · π (b)− 45 · π (b) · θ′det, (p)
+ 10 · π (b) · θ′det, (q) + 5 · π (a)− 5 · π (a) · θ′det, (q)
+ 100 · π (b) · θ′det, (q) + 50 · π (a)− 50 · π (a) · θ′det, (q).

Reorder:

= 45 · π (b) + 5 · π (a) + 50 · π (a)

+ (90 · π (a)− 45 · π (b)) · θ′det, (p)
+ (10 · π (b)− 5 · π (a) + 100 · π (b)− 50 · π (a)) · θ′det, (q).

Using the definition of θ′det, :

= 45 · π (b) + 5 · π (a) + 50 · π (a)

+ (90 · π (a)− 45 · π (b)) ·
∑

θdet∈Θdet

θmix(θdet) · θdet, (p)

+ (10 · π (b)− 5 · π (a) + 100 · π (b)− 50 · π (a)) ·
∑

θdet∈Θdet

θmix(θdet) · θdet, (q)

= V M1

fh (π, θmix).

Now we have that:
∀π ∈ Π. V M1

fh (π, θmix) = V M1

fh (π, θ′det),

So we can conclude that:

∀θmix ∈ Θmix,∃θdet ∈ Θdet,∀π ∈ Π. V M1

fh (π, θmix) = V M1

fh (π, θdet).

We can now prove the following theorem:

Proposition 3. Given the full stickiness and zero stickiness RPOMDPs M1 and M2 of Figure 2:

sup
π∈Π

inf
θmix∈Θmix

V M1

fh (π, θmix) = sup
π∈Π

inf
θdet∈Θdet

V M1

fh (π, θdet),

sup
π∈Π

inf
θmix∈Θmix

V M2

fh (π, θmix) = sup
π∈Π

inf
θdet∈Θdet

V M2

fh (π, θdet).

Proof. For both M1 and M2, the ≤ direction directly follows from Lemma 1 and the ≥ direction from Θdet ⊆ Θmix.

Using Proposition 3, we can focus on deterministic nature policies in our computation of the optimal value function. We can
compute the optimal value for the full stickiness model as follows:

V ∗,M1

fh = sup
π∈Π

inf
θdet∈Θdet

{
45 · π (b) + 5 · π (a) + 50 · π (a)

+ (90 · π (a)− 45 · π (b)) · θdet, (p)
+ (10 · π (b)− 5 · π (a) + 100 · π (b)− 50 · π (a)) · θdet, (q)

}
.

And for the zero stickiness model, simplified in the same manner as the full stickiness value function:

V ∗,M2

fh = sup
π∈Π

inf
θdet∈Θdet

{
45 · π (b) + 5 · π (a) + 50 · π (a)

+ (90 · π (a)− 45 · π (b)) · θdet, (p)
+ (10 · π (b)− 5 · π (a)) · θdet, (q)
+ (100 · π (b)− 50 · π (a)) · θdet, (q)

}
.

Since θdet, is independent from θdet, and π is independent from π , we can rewrite the zero stickiness optimal value function
as:

V ∗,M2

fh = sup
π∈Π

inf
θdet∈Θdet

{
45 · π (b) + 5 · π (a)

+ (90 · π (a)− 45 · π (b)) · θdet, (p)
+ (10 · π (b)− 5 · π (a)) · θdet, (q)

}
+ sup

π∈Π
inf

θdet∈Θdet

{
50 · π (a) + (100 · π (b)− 50 · π (a)) · θdet, (q)

}
.

Table 3 displays the computed optimal values and policies, showing the differences between the full and zero stickiness assump-
tions. An underscore indicates that the value assigned to this variable does not influence the optimal value of the RPOMDP.

Full stickiness Zero stickiness

Optimal value 66 2
3 65 1

2

Optimal agent policy 7→ {a 7→ 1
3 , b 7→

2
3},

7→ {a 7→ 7
10 , b 7→

3
10}

7→ {a 7→ 1
3 , b 7→

2
3},

7→ {a 7→ 2
3 , b 7→

1
3}

Optimal nature policy 7→ {p 7→ 1
3 , q 7→ 1

3} 7→ {p 7→ 83
270 , q 7→ 1

10},
7→ {p 7→ _, q 7→ 1

3}

Table 3: Optimal values and policies for the full stickiness and zero stickiness interpretations of the RPOMDP in Figure 2.

Underlying POSGs
Figure 4 (restated below) depicts the first couple of states of the full and zero stickiness POSGs of the RPOMDP in Figure 2. We
briefly discuss the structural differences. In the zero stickiness case, we have an infinite action choice for nature at every nature
state, but every choice will reach the same unrestricted agent states, as variable assignments never stick in the zero stickiness
case. Due to this, the state space of the zero stickiness POSG is finite, consisting of S+S×A states, where S is the set of states
and A is the set of actions of the original RPOMDP. This can be seen in Figure 4 at nature state ⟨s1, {},⊥⟩, where each choice
reaches the same agent states ⟨s2, {}⟩ and ⟨s3, {}⟩. At this point, the choice does not influence the transition probability, so all
choices go to the agent states with exactly the same probability and essentially have no influence. This is no longer the case
at nature states ⟨s4, {},⊥⟩ and ⟨s5, {},⊥⟩, where the values chosen for p and q directly influence the probability of reaching
agent state ⟨s6, {}⟩, ⟨s7, {}⟩, ⟨s8, {}⟩, and ⟨s9, {}⟩.
In the full stickiness case, on the other hand, each of the infinite action choices at the first nature state ⟨s1, {},⊥⟩ leads to a
unique continuation of the POSG, as each game continues to agent states with different restrictions on nature’s choice. The full
stickiness case, hence, has an infinite state space but only one infinite action choice, namely the first.

s1, {} s1, {},⊥

s2, {}

s3, {}

. . .

. . .

0.5

0.5

0.5

0.5

. . .

. . .

.

.

.

.

.

.

.

.

.

{p 7→ 0.1,
q 7→ 0.1}

{p 7→ 0.9, q 7→ 0.9}

s1, {} s1, {},⊥

s2, {p 7→ 0.1, q 7→ 0.1}

s3, {p 7→ 0.1, q 7→ 0.1}
.
.
.

s2, {p 7→ 0.9, q 7→ 0.9}

s3, {p 7→ 0.9, q 7→ 0.9}

. . .

. . .

. . .

. . .

0.5

0.5

0.5

0.5

. . .

. . .

.

.

.

.

.

.

.

.

.

{p
7→

0.1
,

q 7→
0.1

}

{p 7→
0.9,

q 7→
0.9}

Figure 4: First states of zero stickiness (left) and full stickiness (right) POSGs of the RPOMDP in Figure 2.

D.2 Observation-based stickiness

Next, we look at the RPOMDP in Figure 8 to show that observation-based stickiness also differs in value from full and zero
stickiness. Note that this model extends the RPOMDP in Figure 2. We interpret this model with nature first semantics.

s1

s2

s3

s4

s5

s6

s7

s8

s9

R = 200

R = 0

R = 100

R = 0

R = 200

R = 200

R = 100

R = 200

R = 0

0.5

0.5

0.9

0.1

1

p

1− p

q

1− q

a

b
a

b

a

b

a
p

1− p

b q

1− q

p ∈ [0.1, 0.9]

q ∈ [0.1, 0.9]

Figure 8: An RPOMDP where observation-based stickiness also leads to different values.

For π ∈ Π, we write π = π() and π = π(). Similarly, for θ ∈ Θ of the full stickiness RPOMDP, we write
θ = θ(), for θ ∈ Θ of the observation-based stickiness RPOMDP, we write θ = θ() and θ = θ(), and for
θ ∈ Θ of the zero stickiness RPOMDP, we write θ = θ(), θ = θ(), θ = θ(), and θ = θ().
Using this notation, we can construct the value functions for the various stickiness interpretations of the RPOMDP in Figure 2.
We construct these value functions following the same approach as for the value functions of the RPOMDP in Figure 2, see
Appendix D.1 and Figure 7. The value function for the full stickiness RPOMDP M1 is:

V M1

fh (π, θmix) =
∑

θdet∈Θdet

θmix(θdet) ·
(
0.5 · 0.9 ·

(
θdet, (p) · π (a) · 200 + (1− θdet, (p)) · π (b) · 100

)
+ 0.5 · 0.1 ·

(
θdet, (q) · π (b) · 200 + (1− θdet, (q))

· (π (a) · (θdet, (p) · 200 + (1− θdet, (p)) · 100)
+ π (b) · θdet, (q) · 200)

)
+ 0.5 ·

(
θdet, (q) · π (b) · 200 + (1− θdet, (q))

· (π (a) · (θdet, (p) · 200 + (1− θdet, (p)) · 100)

+ π (b) · θdet, (q) · 200)
))

.

Which simplifies to:

=
∑

θdet∈Θdet

θmix(θdet) ·
(
45 · π (b) + 5 · π (a) + 50 · π (a)

+ (95 · π (a)− 45 · π (b) + 50 · π (a)) · θdet, (p)
+ (20 · π (b)− 5 · π (a) + 200 · π (b)− 50 · π (a)) · θdet, (q)
− (5 · π (a) + 50 · π (a)) · θdet, (p) · θdet, (q)

− (10 · π (b) + 100 · π (b)) · θdet, (q)2
)
.

This function is not linear in the deterministic nature policies, as quickly follows from the multiplication of θ terms. We,
therefore, need to search for the optimal nature policy in the set of mixed nature policies.
We can similarly write the value function for the observation-based stickiness RPOMDP M2:

V M2

fh (π, θmix) =
∑

θdet∈Θdet

θmix(θdet) ·
(
0.5 · 0.9 ·

(
θdet, (p) · π (a) · 200 + (1− θdet, (p)) · π (b) · 100

)
+ 0.5 · 0.1 ·

(
θdet, (q) · π (b) · 200 + (1− θdet, (q))

· (π (a) · (θdet, (p) · 200 + (1− θdet, (p)) · 100)
+ π (b) · θdet, (q) · 200)

)
+ 0.5 ·

(
θdet, (q) · π (b) · 200 + (1− θdet, (q))

· (π (a) · (θdet, (p) · 200 + (1− θdet, (p)) · 100)

+ π (b) · θdet, (q) · 200)
))

.

Which simplifies to:

=
∑

θdet∈Θdet

θmix(θdet) ·
(
45 · π (b) + 5 · π (a) + 50 · π (a)

+ (95 · π (a)− 45 · π (b)) · θdet, (p)
+ (20 · π (b)− 5 · π (a)) · θdet, (q)
− 5 · π (a) · θdet, (p) · θdet, (q)
− 10 · π (b) · θdet, (q)2

+ 50 · π (a) · θdet, (p)
+ (200 · π (b)− 50 · π (a)) · θdet, (q)
− 50 · π (a) · θdet, (p) · θdet, (q)

− 100 · π (b) · θdet, (q)2
)
.

And the value function for the zero stickiness RPOMDP M3:

V M3

fh (π, θmix) =
∑

θdet∈Θdet

θmix(θdet) ·
(
0.5 · 0.9 ·

(
θdet, (p) · π (a) · 200 + (1− θdet, (p)) · π (b) · 100

)
+ 0.5 · 0.1 ·

(
θdet, (q) · π (b) · 200 + (1− θdet, (q))

· (π (a) · (θdet, (p) · 200 + (1− θdet, (p)) · 100)
+ π (b) · θdet, (q) · 200)

)
+ 0.5 ·

(
θdet, (q) · π (b) · 200 + (1− θdet, (q))

· (π (a) · (θdet, (p) · 200 + (1− θdet, (p)) · 100)

+ π (b) · θdet, (q) · 200)
))

.

Which simplifies to:

=
∑

θdet∈Θdet

θmix(θdet) ·
(
45 · π (b) + 5 · π (a) + 50 · π (a)

+ (90 · π (a)− 45 · π (b)) · θdet, (p)
+ (10 · π (b)− 5 · π (a)) · θdet, (q)
+ 5 · π (a) · θdet, (p)

+ 10 · π (b) · θdet, (q)

− 5 · π (a) · θdet, (q) · θdet, (p)

− 10 · π (b) · θdet, (q) · θdet, (q)

+ (100 · π (b)− 50 · π (a)) · θdet, (q)
+ 50 · π (a) · θdet, (p)

+ 100 · π (b) · θdet, (q)

− 50 · π (a) · θdet, (q) · θdet, (p)

− 100 · π (b) · θdet, (q) · θdet, (q)
)
.

Using the above value functions, we can compute the optimal value for the full stickiness model as follows:

V ∗,M1

fh = sup
π∈Π

inf
θmix∈Θmix

{ ∑
θdet∈Θdet

θmix(θdet) ·
(
45 · π (b) + 5 · π (a) + 50 · π (a)

+ (95 · π (a)− 45 · π (b) + 50 · π (a)) · θdet, (p)
+ (20 · π (b)− 5 · π (a) + 200 · π (b)− 50 · π (a)) · θdet, (q)
− (5 · π (a) + 50 · π (a)) · θdet, (p) · θdet, (q)

− (10 · π (b) + 100 · π (b)) · θdet, (q)2
)}

.

And the optimal value for the observation-based stickiness model:

V ∗,M2

fh = sup
π∈Π

inf
θmix∈Θmix

{ ∑
θdet∈Θdet

θmix(θdet) ·
(
45 · π (b) + 5 · π (a) + 50 · π (a)

+ (95 · π (a)− 45 · π (b)) · θdet, (p)
+ (20 · π (b)− 5 · π (a)) · θdet, (q)
− 5 · π (a) · θdet, (p) · θdet, (q)
− 10 · π (b) · θdet, (q)2

+ 50 · π (a) · θdet, (p)
+ (200 · π (b)− 50 · π (a)) · θdet, (q)
− 50 · π (a) · θdet, (p) · θdet, (q)

− 100 · π (b) · θdet, (q)2
)}

.

As histories and , and and are mutually exclusive, and the related non-singleton choices are indepen-
dent for both the agent (π and π) and nature (θ and θ), we can rewrite observation-based stickiness as:

= sup
π∈Π

inf
θmix∈Θmix

{ ∑
θdet∈Θdet

θmix(θdet) ·
(
45 · π (b) + 5 · π (a)

+ (95 · π (a)− 45 · π (b)) · θdet, (p)
+ (20 · π (b)− 5 · π (a)) · θdet, (q)
− 5 · π (a) · θdet, (p) · θdet, (q)

− 10 · π (b) · θdet, (q)2
)}

+ sup
π∈Π

inf
θmix∈Θmix

{ ∑
θdet∈Θdet

θmix(θdet) ·
(
50 · π (a)

+ 50 · π (a) · θdet, (p)
+ (200 · π (b)− 50 · π (a)) · θdet, (q)
− 50 · π (a) · θdet, (p) · θdet, (q)

− 100 · π (b) · θdet, (q)2
)}

.

And the optimal value for the zero stickiness model:

V ∗,M3

fh = sup
π∈Π

inf
θmix∈Θmix

{ ∑
θdet∈Θdet

θmix(θdet) ·
(
45 · π (b) + 5 · π (a) + 50 · π (a)

+ (90 · π (a)− 45 · π (b)) · θdet, (p)
+ (10 · π (b)− 5 · π (a)) · θdet, (q)
+ 5 · π (a) · θdet, (p)

+ 10 · π (b) · θdet, (q)

− 5 · π (a) · θdet, (q) · θdet, (p)

− 10 · π (b) · θdet, (q) · θdet, (q)

+ (100 · π (b)− 50 · π (a)) · θdet, (q)
+ 50 · π (a) · θdet, (p)

+ 100 · π (b) · θdet, (q)

− 50 · π (a) · θdet, (q) · θdet, (p)

− 100 · π (b) · θdet, (q) · θdet, (q)
)}

.

As histories and , and and are mutually exclusive and the related non-singleton choices are independent
for both the agent (π and π) and nature (θ , θ , θ , and θ), we can rewrite zero stickiness as:

= sup
π∈Π

inf
θmix∈Θmix

{ ∑
θdet∈Θdet

θmix(θdet) ·
(
45 · π (b) + 5 · π (a)

+ (90 · π (a)− 45 · π (b)) · θdet, (p)
+ (10 · π (b)− 5 · π (a)) · θdet, (q)
+ 5 · π (a) · θdet, (p)

+ 10 · π (b) · θdet, (q)

− 5 · π (a) · θdet, (q) · θdet, (p)

− 10 · π (b) · θdet, (q) · θdet, (q)
)}

+ sup
π∈Π

inf
θmix∈Θmix

{ ∑
θdet∈Θdet

θmix(θdet) ·
(
50 · π (a)

+ (100 · π (b)− 50 · π (a)) · θdet, (q)
+ 50 · π (a) · θdet, (p)

+ 100 · π (b) · θdet, (q)

− 50 · π (a) · θdet, (q) · θdet, (p)

− 100 · π (b) · θdet, (q) · θdet, (q)
)}

.

We can further simplify it because p and q are independent:

= sup
π∈Π

inf
θmix∈Θmix

{ ∑
θdet∈Θdet

θmix(θdet) ·
(
45 · π (b) + 5 · π (a)

+ (90 · π (a)− 45 · π (b)) · θdet, (p)
+ (10 · π (b)− 5 · π (a)) · θdet, (q)

+ (5 · π (a)− 5 · π (a) · θdet, (q)) · inf
θmix∈Θmix

{ ∑
θdet∈Θdet

θmix(θdet) · θdet, (p)
}

+ (10 · π (b)− 10 · π (b) · θdet, (q)) · inf
θmix∈Θmix

{ ∑
θdet∈Θdet

θmix(θdet) · θdet, (q)
})}

+ sup
π∈Π

inf
θmix∈Θmix

{ ∑
θdet∈Θdet

θmix(θdet) ·
(
50 · π (a)

+ (100 · π (b)− 50 · π (a)) · θdet, (q)

+ (50 · π (a)− 50 · π (a) · θdet, (q)) · inf
θmix∈Θmix

{ ∑
θdet∈Θdet

θmix(θdet) · θdet, (p)
}

+ (100 · π (b)− 100 · π (b) · θdet, (q)) · inf
θmix∈Θmix

{ ∑
θdet∈Θdet

θmix(θdet) · θdet, (q)
})}

.

Table 4 displays the computed optimal values and policies, showing the differences between the full, observation-based, and
zero stickiness assumptions.

Underlying POSGs
The POSG of the full stickiness interpretation of the RPOMDP in Figure 8 displays the same structural difference with the
observation-based stickiness and zero stickiness interpretations as in Figure 4. The variable assignment chosen at the first
nature state ⟨s1, {},⊥⟩ sticks in the full stickiness RPOMDP but not in the observation-based one zero stickiness ones.
The difference between the observation-based stickiness and zero stickiness POSGs occurs at a later stage, namely at nature
states ⟨s4, {},⊥⟩ and ⟨s5, {},⊥⟩. After one of these states, the observation-based stickiness model follows the same structure
as the full stickiness model, leading to infinitely many agent states with different variable restrictions. The POSG of the zero
stickiness interpretation continues with infinitely many transitions going to the same agent states ⟨s6, {}⟩, ⟨s7, {}⟩, ⟨s8, {}⟩,
and ⟨s9, {}⟩ with the totally undefined variable restriction.

Full stickiness Observation-based stickiness Zero stickiness

Optimal value 74 11
390 71 9

10 70 295
348

Optimal agent policy 7→ {a 7→ 17
117 , b 7→

100
117},

7→ {a 7→ 643
1170 , b 7→

527
1170}

7→ {a 7→ 10
31 , b 7→

21
31}

7→ {a 7→ 20
31 , b 7→

11
31}

7→ {a 7→ 1
3 , b 7→

2
3}

7→ {a 7→ 18
29 , b 7→

11
29}

Optimal nature policy 7→ {{p 7→ 0.1, q 7→ 0.1} 7→ 17
24 ,

{p 7→ 0.9, q 7→ 0.1} 7→ 3
104 ,

{p 7→ 0.9, q 7→ 0.9} 7→ 41
156}

7→ {
{p 7→ 0.1, q 7→ 0.1} 7→ 1663

2232 ,

{p 7→ 0.9, q 7→ 0.1} 7→ 569
2232}

7→ {
{p 7→ 0.1, q 7→ 0.1} 7→ 187

248 ,

{p 7→ 0.1, q 7→ 0.9} 7→ 61
248}

7→ {
{p 7→ 0.1, q 7→ 0.1} 7→ 1591

2160 ,

{p 7→ 0.9, q 7→ 0.1} 7→ 569
2160}

7→ {
{p 7→ _, q 7→ 0.1} 7→ 171

232 ,

{p 7→ _, q 7→ 0.9} 7→ 61
232}

7→ {
{p 7→ 0.1, q 7→ 0.1} 7→ 1}

7→ {
{p 7→ 0.1, q 7→ 0.1} 7→ 1}

Table 4: Optimal values and policies for the full stickiness, observation-based stickiness, and zero stickiness interpretations of the RPOMDP
in Figure 8.

D.3 Order of Play Matters
We first revisit the RPOMDP in Figure 3 and show how we computed the optimal values to show that order of play matters in
RPOMDPs.

s1

R = 300

R = 0

R = 300

a

b

p

1− p

p

1− p

p ∈ [0.1, 0.9]

Figure 3: An RPOMDP where agent first and nature first semantics do not coincide in their optimal value.

For π ∈ Π, we write π = π(). Similarly, for θ ∈ Θ of the agent first RPOMDP, we write θa = θ(⟨ , a⟩) and θb = θ(⟨ , b⟩),
and for θ ∈ Θ of the nature first RPOMDP, we write θ = θ(). Using this notation, we can construct the value functions for
the agent first and nature interpretations of the RPOMDP in Figure 3. We construct these value functions following the same
approach as for the value functions of the RPOMDP in Figure 2, see Appendix D.1 and Figure 7. The value function for the
agent first RPOMDP M1 is:

V M1

fh (π, θmix) =
∑

θdet∈Θdet

θmix(θdet)
(
π (a) · θdet,a(p) · 300 + π (b) · (1− θdet,b(p)) · 300

)
.

And the value function for the nature first RPOMDP M2:

V M2

fh (π, θmix) =
∑

θdet∈Θdet

θmix(θdet)
(
π (a) · θdet, (p) · 300 + π (b) · (1− θdet, (p)) · 300

)
.

Both these functions are linear in the deterministic nature policies. As we again have a convex uncertainty set, we can follow
the same steps as for Proposition 3 and restrict the search for the optimal nature policy to the set of deterministic nature policies.
Using the above functions, we can compute the optimal value for the agent first model as follows:

V ∗,M1

fh = sup
π∈Π

inf
θdet∈Θdet

{
π (a) · θdet,a(p) · 300 + π (b) · (1− θdet,b(p)) · 300

}
.

And the optimal value for the nature first model:

V ∗,M2

fh = sup
π∈Π

inf
θdet∈Θdet

{
π (a) · θdet, (p) · 300 + π (b) · (1− θdet, (p)) · 300

}
.

Table 5 displays the computed optimal values and policies, showing the differences between the agent and nature first assump-
tions. An underscore indicates that the choice at this history does not influence the optimal value of the RPOMDP.

Agent first Nature first

Optimal value 30 150
Optimal agent policy 7→ _ 7→ {a 7→ 0.5, b 7→ 0.5}
Optimal nature policy ⟨ , a⟩ 7→ {p 7→ 0.1},

⟨ , b⟩ 7→ {p 7→ 0.9}
7→ {p 7→ 0.5}

Table 5: Optimal values and policies for the agent first and nature first interpretations of the RPOMDP in Figure 3.

Underlying POSGs

Figure 5 (restated below) depicts the agent first and nature first POSGs of the RPOMDP in Figure 3. We briefly discuss the
structural differences. As the agent has a finite choice of actions, this will always lead to a finite split in the POSG. Nature’s
number of choices depends on the variable restrictions in the nature state. In this simple model, we only have unrestricted, and
hence infinite, nature choices. The structural difference between the two POSGs is caused entirely by the order of play.
When the agent chooses first, the POSG has a finite number of states. The infinite choice in the nature states ⟨s1, {}, a⟩ and
⟨s1, {}, b⟩ all lead to the same reward states, just with different probabilities determined by the chosen variable assignment.
When nature chooses first, we get an infinite number of agent states after nature’s infinite choice in nature state ⟨s1, {}⟩, as the
chosen variable assignment needs to be recorded for the transition after the agent’s choice. The number of states in the nature
first model is hence infinite. Each resulting agent state only has a finite choice leading to the same reward states.

s1, {}

s1, {}, a

s1, {}, b

R = 300

R = 0

R = 0

R = 300

a

b

0.1

0.9

0.9

0.1

. . .

. . .

.

.

.

.

.

.

.

.

.

{p 7→ 0.1}

{p 7→ 0.9}

0.1

0.9

0.9

0.1

. . .

. . .

.

.

.

.

.

.

.

.

.

{p 7→ 0.1}

{p 7→ 0.9}

s1, {}

s1, {}, {p 7→ 0.1}

s1, {}, {p 7→ 0.9}

R = 300

R = 0

R = 300

R = 0

{p 7→ 0.1
}

{p 7→
0.9}

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

a

b

0.1

0.9

0.9

0.1

a

b

0.9

0.1

0.1

0.9

Figure 5: Agent first (left) and nature first (right) POSGs of the RPOMDP in Figure 3.

D.4 a-Rectangularity

Next, we look at an a-rectangular RPOMDP to show that order of play still matters under a form of rectangularity and is
not only a concern in non-rectangular RPOMDPs. Consider the RPOMDP in Figure 9. We interpret this RPOMDP with full
stickiness semantics.

s1

s2

R = 300

R = 0

R = 100

R = 0

R = 100

R = 0

a

b

p

1− p

q

0.5− q

0.5

a

b

p

1− p

q

1− q

p ∈ [0.1, 0.4]

q ∈ [0.1, 0.4]

Figure 9: An a-rectangular RPOMDP where agent first and nature first semantics do not coincide in their optimal value.

For π ∈ Π, we write π = π() and π = π(). Similarly, for θ ∈ Θ of the agent first RPOMDP, we write θa = θ(⟨ , a⟩)
and θb = θ(⟨ , b⟩), and for θ ∈ Θ of the nature first RPOMDP, we write θ = θ(). Using this notation, we can construct the
value functions for the agent first and nature interpretations of the RPOMDP in Figure 9. We construct these value functions
following the same approach as for the value functions of the RPOMDP in Figure 2, see Appendix D.1 and Figure 7. The value
function for the agent first RPOMDP M1 is:

V M1

fh (π, θmix) =
∑

θdet∈Θdet

θmix(θdet)
(
π (a) · θdet,a(p) · 300 + π (b) ·

(
(0.5− θdet,b(q)) · 100

+ 0.5 · (π (a) · (1− θdet,b(p)) · 100 + π (b) · θdet,b(q) · 100)
))

.

And the value function for the nature first RPOMDP M2:

V M1

fh (π, θmix) =
∑

θdet∈Θdet

θmix(θdet)
(
π (a) · θdet (p) · 300 + π (b) ·

(
(0.5− θdet (q)) · 100

+ 0.5 · (π (a) · (1− θdet (p)) · 100 + π (b) · θdet (q) · 100)
))

.

Both these functions are linear in the deterministic nature policies. As we again have a convex uncertainty set, we can follow
the same steps as for Proposition 3 and restrict the search for the optimal nature policy to the set of deterministic nature policies.
Using the above functions, we can compute the optimal value for the agent first model as follows:

V ∗,M1

fh = sup
π∈Π

inf
θdet∈Θdet

{
π (a) · θdet,a(p) · 300 + π (b) ·

(
(0.5− θdet,b(q)) · 100

+ 0.5 · (π (a) · (1− θdet,b(p)) · 100 + π (b) · θdet,b(q) · 100)
)}

.

And the optimal value for the nature first RPOMDP M2:

V ∗,M2

fh = sup
π∈Π

inf
θdet∈Θdet

{
π (a) · θdet, (p) · 300 + π (b) ·

(
(0.5− θdet, (q)) · 100

+ 0.5 · (π (a) · (1− θdet, (p)) · 100 + π (b) · θdet, (q) · 100)
)}

.

Table 6 displays the computed optimal values and policies, showing the differences between the agent and nature first assump-
tions. An underscore indicates that the value assigned to this variable does not influence the optimal value of the RPOMDP.

Underlying POSGs
Figure 10 depicts the agent first and nature first POSGs of the RPOMDP in Figure 9. The structural difference between these
POSGs, like between the POSGs in Figure 5, is caused by the different points of infinite branching.

Agent first Nature first

Optimal value 40 51 3
7

Optimal agent policy 7→ {a 7→ 0, b 7→ 1},
7→ {a 7→ 1, b 7→ 0}

7→ {a 7→ 1
7 , b 7→

6
7},

7→ {a 7→ 1, b 7→ 0}
Optimal nature policy ⟨ , a⟩ 7→ {p 7→ 0.1, q 7→ _},

⟨ , b⟩ 7→ {p 7→ 0.4, q 7→ 0.4}
7→ {p 7→ 6

35 , q 7→ 0.4}

Table 6: Optimal values and agent policies for the agent first and nature first interpretations of the RPOMDP in Figure 9.

s1, {}

s1, {}, a

s1, {}, b

R = 300

R = 0

R = 300

R = 0

R = 0

R = 100

R = 0

R = 100

s2, {p 7→ 0.1, q 7→ 0.1}

s2, {p 7→ 0.4, q 7→ 0.4}

s2, {p 7→ 0.4, q 7→ 0.4}, a

s2, {p 7→ 0.4, q 7→ 0.4}, b

s2, {p 7→ 0.4, q 7→ 0.4}, a

s2, {p 7→ 0.4, q 7→ 0.4}, b

R = 0

R = 100

R = 0

R = 0

R = 100

R = 0

a

{p
7→

0.1
,

q 7→
0.1

}

{p 7→
0.4,

q 7→
0.4}

. . .

. . .

...

...

...

...

0.1

0.9

0.4

0.6

b {p
7→
0.1
,

q 7→
0.1
}

{p 7→
0.4,

q 7→
0.4}

. . .

. . .

...

...

...

...

0.1

0.4

0.5

0.4

0.1

0.5

a

b

a

b

{p 7→ 0.1,
q 7→ 0.1}

{p 7→ 0.1,
q 7→ 0.1}

{p 7→ 0.4,
q 7→ 0.4}

{p 7→ 0.4,
q 7→ 0.4}

0.1

0.9
0.1

0.9

0.4

0.6
0.4

0.6

s1, {},⊥

s1, {}, {p 7→ 0.1, q 7→ 0.1}

s1, {}, {p 7→ 0.4, q 7→ 0.4}

R = 300

R = 0

R = 100

R = 300

R = 0

R = 100

s2, {p 7→ 0.1, q 7→ 0.1}, b

s2, {p 7→ 0.4, q 7→ 0.4}, b

s2, {p 7→ 0.1, q 7→ 0.1},
{p 7→ 0.1, q 7→ 0.1}

s2, {p 7→ 0.4, q 7→ 0.4},
{p 7→ 0.4, q 7→ 0.4}

R = 0

R = 100

R = 0

R = 0

R = 100

R = 0

{p
7→
0.
1,

q
7→
0.
1}

{p 7→
0.4,

q 7→
0.4}

. . .

. . .

...

...

...

...

a

b

0.1

0.9

0.1

0.4

0.5

a

b

0.4

0.6

0.4

0.1

0.5

{p 7→ 0.1,
q 7→ 0.1}

a

b

0.1

0.9

0.1

0.9

{p 7→ 0.4,
q 7→ 0.4}

a

b

0.4

0.6

0.4

0.6

Figure 10: Agent first (top) and nature first (bottom) POSGs of the RPOMDP in Figure 9.

E Nature First Semantics
Throughout the main paper and the appendix, the definitions and proofs are all written with the agent first order of play. This
appendix discusses the changes required to achieve the same results with the nature first semantics.

Policies in the RPOMDP. When nature moves first, nature receives the agent’s action after choosing its own action. There-
fore, nature policies in nature first RPOMDPs are of the following types:

Stochastic:
Deterministic:

Mixed:

θ : Hn,M → ∆(U),

θdet : Hn,M → U ,

θmix ∈ ∆(Hn,M → U).

The agent policies do not change, as we assume the agent still cannot observe the variable assignments nature chooses.

Nature first POSG. Given a nature first RPOMDP, we define its POSG as follows.
Definition 18 (Equivalent nature first POSG). Given a robust POMDP ⟨S,A,T , R, Za

• , Z
n
• , Z◦, O

a
• , O

n
• , O◦⟩, we define the

POSG where nature chooses first as a tuple ⟨Sa,Sn,Aa,An, T ,R,Za,Zn,Oa,On⟩, where Sn,Aa,An,Za, and Zn remain
the same as in Definition 5. The agent’s state-space is given by Sa = S×U ↪→×U , and the transition, reward, and observation
functions are defined as follows:

• T a : Sa ×Aa → ∆(Sn), by T a(⟨s, u↪→, u⟩, a, ⟨s′, upd(u↪→, u,On
•(s), O◦(s), a), a⟩) = T (u)(s, a, s′).

• T n : Sn ×An → Sa, by T n(⟨s, u↪→, a⟩, u, ⟨s, u↪→, u⟩) =
{
1 if u ∈ UP(u↪→),
0 otherwise.

• R : Sa ×Aa → R by R(⟨s, u↪→, u⟩, a) = R(s, a).

• Oa : (Sa ∪ Sn) → Za by Oa(s) =

{
⟨Oa

•(s
′), O◦(s

′)⟩ if s = ⟨s′, u↪→, u⟩ ∈ Sa,
⟨Oa

•(s
′), O◦(s

′)⟩ if s = ⟨s′, u↪→, a⟩ ∈ Sn.

• On : (Sa ∪ Sn) → Zn by

On(s) =

{
⟨On

•(s
′), O◦(s

′),⊥⟩ if s = ⟨s′, u↪→, u⟩ ∈ Sa,
⟨On

•(s
′), O◦(s

′), a⟩ if s = ⟨s′, u↪→, a⟩ ∈ Sn.

The a observed in a Sn state corresponds to the previously chosen a. So, the action that nature observes in a nature state
⟨s′, u↪→, a⟩ ∈ Sn is the action a ∈ A that was taken to reach the current state s′ ∈ S of the RPOMDP, not the action the agent
will take from the current state. This game starts in a Sn state consisting of the initial state sI ∈ S in the RPOMDP, the totally
undefined variable assignment u⊥ ∈ U ↪→, and a placeholder for the action ⊥.

Paths and histories. When reasoning with the nature first semantics, the order of the paths in the POSG changes:

PathsG : (Sa ×Aa × Sn ×An)∗ × Sa =⇒ (Sn ×An × Sa ×Aa)∗ × Sn.

As a result, the histories similarly change:

HG : (Za ×Zn ×Aa ×Za ×Zn ×An)∗ ×Za ×Zn =⇒ (Zn ×Za ×An ×Zn ×Za ×Aa)∗ ×Zn ×Za.

Ha,G : (Za ×Aa ×Za)∗ ×Za =⇒ (Za ×Za ×Aa)∗ ×Za.

Hn,G : (Zn ×Zn ×An)∗ ×Zn =⇒ (Zn ×An ×Zn)∗ ×Zn.

Policies in the POSG As the order of the paths and historis changed, the policy types also change. The agent now observes
an extra state, instead of nature. Note that this extra observation contains no extra information for the agent, while it did for
nature in the agent-first semantics.

Stochastic: π : Ha,G → ∆(Aa) =⇒ π : Ha,G ×Za → ∆(Aa),

Deterministic: πdet : Ha,G → Aa =⇒ πdet : Ha,G ×Za → Aa,

Mixed: πmix ∈ ∆(Ha,G → Aa) =⇒ πmix ∈ ∆(Ha,G ×Za → Aa),

Stochastic: θ : Hn,G ×Zn → ∆(An), =⇒ θ : Hn,G → ∆(An)

Deterministic: θdet : Hn,G ×Zn → An, =⇒ θdet : Hn,G → An

Mixed: θmix ∈ ∆(Hn,G ×Zn → An) =⇒ θmix ∈ ∆(Hn,G → An).

Additional adaptations. At the end of Appendices A, F and G, the adjustments required for the definitions or proofs to work
with the nature first semantics are briefly discussed.

F Equivalent Values
Given the stickiness and order of play, we show that the value of an RPOMDP and its POSG are equivalent (Theorem 2). To do
so, we construct a bijection between the sets of paths of the two models. We use this bijection to subsequently construct new
bijections between the sets of histories and policies and finally conclude that the values are equivalent. For convenience, we
repeat the proposition from the main text and then split it into several lemmas.
Proposition 1 (Bijection between paths and histories). Let M be an RPOMDP, and G the POSG of M . There exists a bijection
f : PathsM → PathsG and bijections between individual players’ histories:

• Let Ha,M and Ha,G be the set of all agent histories in M and G, respectively. There exists a bijection fa,h : Ha,M →
Ha,G.

• Let Hn,M and Hn,G be the set of all nature histories in M and G, respectively. There exists a bijection fn,h : Hn,M →
Hn,G.

Lemma 2 (Bijection between paths). Let M be an RPOMDP, and G the POSG of M . There exists a bijection f : PathsM →
PathsG.

Proof. Let PathsM,⋉ ⊆ (S × A × U)∗ × S? with ? ∈ {0, 1} be the set of all path segments in the RPOMDP,
and let PathsG,⋉ ⊆ (Sa × Aa × Sn × An)∗ × (Sa)? with ? ∈ {0, 1} be the set of all path segments in the
POSG. With path segment we mean that the path can starts at any time steps t ∈ N and can end at any time step
t′ ∈ N, t <= t′. The optional last state is only used for path segments until the horizon. Note that PathsM ⊆ PathsM,⋉

and PathsG ⊆ PathsG,⋉. Let τM = ⟨s0, a0, u0, s1, . . . , sn⟩ ∈ PathsM and t ≤ n, then τM (t) indicates the t-th
segment ⟨st, at, ut⟩ of τM . Note that if t = n, the segment will only consist of the final state ⟨sn⟩. Similarly, let
τG = ⟨sa0, aa0, sn0 , an0 , sa1, . . . , san⟩ = ⟨⟨s0, u⊥⟩, a0, ⟨s0, u⊥, a0⟩, u0, ⟨s1, u↪→

1 ⟩, . . . , ⟨sn, u↪→
n⟩⟩ ∈ PathsG and t ≤ n, then τG(t)

indicates the t-th segment ⟨sat , aat , snt , ant ⟩ = ⟨⟨st, u↪→
t ⟩, at, ⟨st, u↪→

t , at⟩, ut⟩ of τG. Note that if t = n, the segment will only
consist of the final agent state ⟨san⟩ = ⟨⟨sn, u↪→

n⟩⟩.

Let g : PathsM,⋉ ×U ↪→ ↪→ PathsG,⋉ defined by:
g(⟨s⟩, u↪→) = ⟨⟨s, u↪→⟩⟩.

g(⟨s, a, u⟩, u↪→) =
{
⟨⟨s, u↪→⟩, a, ⟨s, u↪→, a⟩, u⟩ if u ∈ UP(u↪→),
⊥ otherwise.

g(⟨s, a, u⟩ ⊕ τM
′
, u↪→) =

{
g(⟨s, a, u⟩, u↪→)⊕ g(τM

′
, upd(u↪→, u,On

•(s), O◦(s), a)) if u ∈ UP(u↪→),
⊥ otherwise.

Let f : PathsM → PathsG defined by:

f(⟨s⟩) = ⟨⟨s, u⊥⟩⟩.
f(⟨s, a, u⟩) = ⟨⟨s, u⊥⟩, a, ⟨s, u⊥, a⟩, u⟩.

f(⟨s, a, u⟩ ⊕ τM
′
) = f(⟨s, a, u⟩)⊕ g(τM

′
, upd(u⊥, u,On

•(s), O◦(s), a)).

Where u⊥ ∈ U ↪→ is the totally undefined function. Note that the results of f and g are in PathsG and PathsG,⋉ by construction.
Also, note that any call to g that originated from a call in f will have a result by construction.

We show that f is a bijection, meaning f is injective and surjective. We first show f is injective, so we show that:

∀τ1,M , τ2,M ∈ PathsM .τ1,M ̸= τ2,M =⇒ f(τ1,M) ̸= f(τ2,M).

Given arbitrary τ1,M , τ2,M ∈ PathsM , we distinguish between the paths with superscripts 1 and 2, respectively. Assume
τ1,M ̸= τ2,M . If τ1,M and τ2,M do not have the same horizon length, then neither do f(τ1,M) and f(τ2,M). Then trivially,
f(τ1,M) ̸= f(τ2,M).

Assume τ1,M and τ2,M have the same horizon length n. Then ∃t ≤ n where τ1,M and τ2,M deviate, so τ1,M (t) ̸= τ2,M (t).
Let q be the smallest number where the paths deviate. So ∀t < q.τ1,M (t) = τ2,M (t) and τ1,M (q) ̸= τ2,M (q). Assume q < n.
Then we know ⟨s1q, a1q, u1

q⟩ ≠ ⟨s2q, a2q, u2
q⟩, which comes down to: s1q ̸= s2q ∨ a1q ̸= a2q ∨ u1

q ̸= u2
q .

f(τ1,M) = f(τ1,M (1)⊕ τ1,M
′
)

= τ1,G(1)⊕ g(τ1,M
′
, upd(u⊥, u1

0, O
n
•(s

1
0), O◦(s

1
0), a

1
0)).

Unfold g until q:

=

q⊕
t=0

(τ1,G(t))⊕ ⟨⟨s1q, fix(τ
1,M
0:q)⟩, a1q, ⟨s1q, fix(τ

1,M
0:q), a1q⟩, u1

q⟩ ⊕ g(τ1,M
′′
, fix(τ1,M0:q+1)).

Since s1q ̸= s2q ∨ a1q ̸= a2q ∨ u1
q ̸= u2

q:

̸=
q⊕

t=0

(τ1,G(t))⊕ ⟨⟨s2q, fix(τ
1,M
0:q)⟩, a2q, ⟨s2q, fix(τ

1,M
0:q), a2q⟩, u2

q⟩ ⊕ g(τ2,M
′′
, fix(τ1,M0:q+1))

=

q⊕
t=0

(τ2,G(t))⊕ ⟨⟨s2q, fix(τ2.M0:q)⟩, a2q, ⟨s2q, fix(τ
2,M
0:q), a2q⟩, u2

q⟩ ⊕ g(τ2,M
′′
, fix(τ2,M0:q+1)).

Fold g until 1:

= τ2,G(1)⊕ g(τ2,M
′
, upd(u⊥, u2

0, O
n
•(s

2
0), O◦(s

2
0), a

2
0))

= f(τ2,M (1)⊕ τ2,M
′
)

= f(τ2,M).

If q = n, then the same result follows by removing everything after ⟨s1q, fix(τ
1,M
0:q)⟩, ⟨s2q, fix(τ

1,M
0:q)⟩, and ⟨s2q, fix(τ

2,M
0:q)⟩. We

thus have that f(τ1,M) ̸= f(τ2,M), so f is injective.

Next, we show that f is surjective, so we show that:

∀τG ∈ PathsG,∃τM ∈ PathsM .f(τM) = τG.

We show this holds by induction on the horizon length of the τG ∈ PathsG. We write the length of τG as |τG|.
Assume |τG| = 0. Then τG = ⟨sI , u⊥⟩. We have that for ⟨sI⟩ ∈ PathsM , f(⟨sI⟩) = ⟨⟨sI , u⊥⟩⟩ = τG. So for paths of horizon
length 0, f is surjective.

Now assume we know, given q ∈ N, q ≥ 1, that:

∀τG ∈ PathsG.|τG| = q − 1 =⇒ ∃τM ∈ PathsM : f(τM) = τG.

Take arbitrary τG ∈ PathsG with horizon length |τG| = q. Then we have τG = τG0:q−1 ⊕
⟨aq−1, ⟨sq−1, u

↪→
q−1, aq−1⟩, uq−1, ⟨sq, u↪→

q ⟩⟩. Then τG0:q−1 ∈ PathsG and |τG0:q−1| = q − 1. By assumption, we get that:

∃τM0:q−1 ∈ PathsM , f(τM0:q−1) = τG0:q−1.

Let τM0:q−1 ∈ PathsM such that f(τM0:q−1) = τG0:q−1. We then know that in τG:

∀t < q.u↪→
t = fix(τM0:t).

And, by Definition 5 and the definition of PathsG, that:

u↪→
q = upd(fix(τM0:q−1), uq−1, O

n
•(sq−1), O◦(sq−1), aq−1).

Let ⟨⟨sq−2, fix(τ
M
0:q−2)⟩, aq−2, ⟨sq−2, fix(τ

M
0:q−2), aq−2⟩, uq−2, ⟨sq−1, fix(τ

M
0:q−1)⟩⟩ be the last two segments of τG0:q−1. Then by

definition and injectivity of f , we know that the last two segments of τM0:q−1 are ⟨sq−2, aq−2, uq−2, sq−1⟩.

Now, by definition Definition 5 and the definition of PathsG, we know that:

τG = τG0:q−1 ⊕ ⟨aq−1, ⟨sq−1, u
↪→
q−1, aq−1⟩, uq−1, ⟨sq, u↪→

q ⟩⟩ ∈ PathsG

⇐⇒
τG0:q−1 ∈ PathsG ∧ T a(⟨sq−1, u

↪→
q−1⟩, aq−1, ⟨sq−1, u

↪→
q−1, aq−1⟩) > 0

∧T n(⟨sq−1, u
↪→
q−1), aq−1⟩, uq−1, ⟨sq, u↪→

q ⟩) > 0

⇐⇒

τG0:q−1 ∈ PathsG ∧ uq−1 ∈ UP(u↪→
q−1) ∧ T (uq−1)(sq−1, aq−1, sq) > 0

⇐⇒
τG0:q−1 ∈ PathsG ∧ uq−1 ∈ UP(fix(τM0:q−1)) ∧ T (uq−1)(sq−1, aq−1, sq) > 0.

So, since τG ∈ PathsG, we know uq−1 ∈ UP(fix(τM0:q−1)) and T (uq−1)(sq−1, aq−1, sq) > 0, which are the restrictions for
τM = τM0:q−1 ⊕ ⟨aq−1, uq−1, sq⟩ ∈ PathsM to hold.

f(τM) = f(τM0:q−1 ⊕ ⟨aq−1, uq−1, sq⟩)

=

q−2⊕
t=0

τG0:q−1(t)⊕ g(⟨sq−1, aq−1, uq−1, sq⟩, fix(τM0:q−1))

=

q−2⊕
t=0

τG0:q−1(t)⊕ g(⟨sq−1, aq−1, uq−1⟩, fix(τM0:q−1))⊕ g(⟨sq⟩, fix(τM0:q))

=

q−2⊕
t=0

τG0:q−1(t)⊕ g(⟨sq−1, aq−1, uq−1⟩, fix(τM0:q−1))⊕ g(⟨sq⟩, upd(fix(τM0:q−1), uq−1, O
n
•(sq−1), O◦(sq−1), aq−1))

=

q−2⊕
t=0

τG0:q−1(t)⊕ g(⟨sq−1, aq−1, uq−1⟩, fix(τM0:q−1))⊕ g(⟨sq⟩, u↪→
q)

=

q−2⊕
t=0

τG0:q−1(t)⊕ ⟨⟨sq−1, fix(τ
M
0:q−1)⟩, aq−1, ⟨sq−1, fix(τ

M
0:q−1), aq−1⟩, uq−1⟩ ⊕ g(⟨sq⟩, u↪→

q)

=

q−2⊕
t=0

τG0:q−1(t)⊕ ⟨⟨sq−1, u
↪→
0:q−1⟩, aq−1, ⟨sq−1, u

↪→
q−1, aq−1⟩, uq−1⟩ ⊕ g(⟨sq⟩, u↪→

q)

= τG0:q−1 ⊕ ⟨aq−1, ⟨sq−1, u
↪→
q−1, aq−1⟩, uq−1⟩ ⊕ g(⟨sq⟩, u↪→

q)

= τG0:q−1 ⊕ ⟨aq−1, ⟨sq−1, u
↪→
q−1, aq−1⟩, uq−1, ⟨sq, u↪→

q ⟩⟩
= τG.

So if f is surjective for paths of arbitrary length q − 1 ∈ N, f is surjective for paths of length q. Hence, by induction, f is
surjective.

f is injective and surjective, hence f is a bijection.

We write ≃ to indicate equivalence between objects in the RPOMDP and the POSG.

Corollary 1 (Corresponding paths). f is a bijection between PathsM and PathsG, so the set of paths in the RPOMDP is
equivalent to the set of paths in the POSG:

PathsM ≃ PathsG,
where ∀τM ∈ PathsM ,∀τG ∈ PathsG.

τM ≃ τG ⇐⇒ f(τM) = τG.

We show and prove a bijection between joint histories, as introduced in Appendix A.2. The individual agent and nature histories’
bijection proofs follow the same line of reasoning, omitting elements private to the other player.
Proposition 4 (Bijection between joint histories). Let M be an RPOMDP, and G the POSG of M . There exists a bijection
fh : HM → HG.

Proof. Let HM,⋉ be the joint histories segments for the RPOMDP and let HG,⋉ be the joint his-
tories segments for the parameterized POSG. Again, we have that HM ⊆ HM,⋉ and HG ⊆
HG,⋉. Let hM = ⟨za•,0, zn•,0, z◦,0, a0, u0, z

a
•,1, z

n
•,1, z◦,1, . . . , z

a
•,n, z

n
•,n, z◦,n⟩ ∈ HM and t ≤

n, then hM (t) indicates the t-th segment ⟨za•,t, zn•,t, z◦,t, at, ut⟩ of hM . Note that if t = n,
the segment will only consist of the final observations ⟨za•,n, zn•,n, z◦,n⟩. Similarly, let hG =
⟨⟨za•,0, z◦,0⟩, ⟨zn•,0, z◦,0,⊥⟩, a0, ⟨za•,0, z◦,0⟩, ⟨zn•,0, z◦,0, a0⟩, u0, ⟨za•,1, z◦,1⟩, ⟨zn•,1, z◦,1,⊥⟩, . . . , ⟨za•,n, z◦,n⟩, ⟨zn•,n, z◦,n,⊥⟩⟩ ∈
HG and t ≤ n, then hG(t) indicates the t-th segment ⟨⟨za•,t, z◦,t⟩, ⟨zn•,t, z◦,t,⊥⟩, at, ⟨za•,t, z◦,t⟩, ⟨zn•,t, z◦,t, at⟩, ut⟩ of hG. Note
that if t = n, the segment will only consist of the final observations ⟨⟨za•,n, z◦,n⟩, ⟨zn•,n, z◦,n,⊥⟩⟩.

Let gh : HM,⋉ → HG,⋉ defined by:

gh(⟨za• , zn• , z◦⟩) = ⟨⟨za• , z◦⟩, ⟨zn• , z◦,⊥⟩⟩.
gh(⟨za• , zn• , z◦, a, u⟩) = ⟨⟨za• , z◦⟩, ⟨zn• , z◦,⊥⟩, a, ⟨za• , z◦⟩, ⟨zn• , z◦, a⟩, u⟩.

gh(⟨za• , zn• , z◦, a, u⟩ ⊕ h′) = gh(⟨za• , zn• , z◦, a, u⟩)⊕ gh(h′).

Let fh : HM → HG defined by:

fh(⟨za• , zn• , z◦⟩) = ⟨⟨za• , z◦⟩, ⟨zn• , z◦,⊥⟩⟩.
fh(⟨za• , zn• , z◦, a, u⟩) = ⟨⟨za• , z◦⟩, ⟨zn• , z◦,⊥⟩, a, ⟨za• , z◦⟩, ⟨zn• , z◦, a⟩, u⟩.

fh(⟨za• , zn• , z◦, a, u⟩ ⊕ h′) = fh(⟨za• , zn• , z◦, a, u⟩)⊕ gh(h′).

Note that the results of fh and gh are in HG and HG,⋉ by construction. Also, note that these function definitions are similar
to those for paths.

We show that fh is a bijection. We first show fh is injective, so we show that:

∀h1,M , h2,M ∈ HM .h1,M ̸= h2,M =⇒ fh(h1,M) ̸= fh(h2,M).

Given arbitrary h1,M , h2,M ∈ HM , we distinguish between the histories with a superscript 1, 2 respectively. Assume
h1,M ̸= h2,M . If h1,M and h2,M do not have the same horizon length, then neither do fh(h1,M) and fh(h2,M). Then trivially,
fh(h1,M) ̸= fh(h2,M).

Assume fh(h1,M) and fh(h2,M) have the same horizon length n. Then ∃t ≤ n where fh(h1,M) and fh(h2,M) deviate,
so h1,M (t) ̸= h2,M (t). Let q be the smallest number where the histories deviate. So ∀t < q.h1,M (t) = h2,M (t) and
h1,M (q) ̸= h2,M (q). Assume q < n. Then we know ⟨za,1•,q , z

n,1
•,q , z

1
◦,q, a

1
q, u

1
q⟩ ≠ ⟨za,2•,q , z

n,2
•,q , z

2
◦,q, a

2
q, u

2
q⟩, which comes down

to: za,1•,q ̸= za,2•,q ∨ zn,1•,q ̸= zn,2•,q ∨ z1◦,q ̸= z2◦,q ∨ a1q ̸= a2q ∨ u1
q ̸= u2

q .

fh(h1,M) = fh(h1,M (1)⊕ hM
1

′
)

= hG
1 (1)⊕ gh(h1,M ′

).

Unfold gh until q:

=

q−1⊕
t=0

(hG
1 (t))⊕ ⟨⟨za,1•,q , z

1
◦,q⟩, ⟨zn,1•,q , z

1
◦,q,⊥⟩, a1q, ⟨za,1•,q , z

1
◦,q⟩, ⟨zn,1•,q , z◦,q, a

1
q⟩, u1

q⟩ ⊕ gh(h1,M ′′
).

Since za,1•,q ̸= za,2•,q ∨ zn,1•,q ̸= zn,2•,q ∨ z1◦,q ̸= z2◦,q ∨ a1q ̸= a2q ∨ u1
q ̸= u2

q:

̸=
q−1⊕
t=0

(hG
1 (t))⊕ ⟨⟨za,2•,q , z

2
◦,q⟩, ⟨zn,2•,q , z

2
◦,q,⊥⟩, a2q, ⟨za,2•,q , z

2
◦,q⟩, ⟨zn,2•,q , z◦,q, a

2
q⟩, u2

q⟩ ⊕ gh(h2,M ′′
)

=

q−1⊕
t=0

(h2,G(t))⊕ ⟨⟨za,2•,q , z
2
◦,q⟩, ⟨zn,2•,q , z

2
◦,q,⊥⟩, a2q, ⟨za,2•,q , z

2
◦,q⟩, ⟨zn,2•,q , z◦,q, a

2
q⟩, u2

q⟩ ⊕ gh(h2,M ′′
).

Fold gh until 1:

= h2,G(1)⊕ gh(h2,M ′
)

= fh(h2,M (1)⊕ hM
2

′
)

= fh(h2,M).

If q = n, then the same result follows by removing everything after ⟨zn,1•,q , z
1
◦,q,⊥⟩, and ⟨zn,2•,q , z

2
◦,q,⊥⟩. We thus have that

fh(h1,M) ̸= fh(h2,M), so fh is injective.

Next, we show that fh is surjective, so we show that:

∀hG ∈ HG,∃hM ∈ HM .fh(hM) = hG.

Take arbitrary hG ∈ HG. By construction of HG, OG (see Appendix A.2) is surjective, so we know
∃τG ∈ PathsG, OG(τG) = hG. Take τG ∈ PathsG such that OG(τG) = hG. Let τM ∈ PathsM be the correspond-
ing path in the RPOMDP. So f(τM) = τG. Then hM = OM (τM) ∈ HM .

We proof fh(hM) = hG by contradiction. Assume fh(hM) = hG
2 ̸= hG. By construction of f , we know |τM | = |τG|. Then,

by construction of OM , OG, and fh, which each map a segment to a segment, we know |hG
2 | = |hG|.

Let n be the horizon length of hG
2 and hG. Then ∃t ∈ N where hG

2 and hG deviate, so hG(t) ̸= hG
2 (t). Let q be such a

number where the horizons deviate. So hG(q) ̸= hG
2 (q). Note that q ≥ 1, since there is only one initial state, therefore

hG(0) = hG
2 (0). Assume q < n and let τG(q) = ⟨⟨sq, u↪→

q ⟩, aq, ⟨sq, u↪→
q , aq⟩, uq⟩. Then by the definition and bijectivity of f ,

we know τM (q) = ⟨sq, aq, uq⟩. Furthermore, by construction, we know that fh, gh, OG, OG,⋉, OM , and OM,⋉ all apply on
the segments of the paths or histories separately.

hG(q) = OG(τG(q))

= OG(⟨⟨sq, u↪→
q ⟩, aq, ⟨sq, u↪→

q , aq⟩, uq⟩)
= ⟨⟨Oa

•(sq), O◦(sq)⟩, ⟨On
•(sq), O◦(sq),⊥⟩, aq, ⟨Oa

•(sq), O◦(sq)⟩, ⟨On
•(sq), O◦(sq), aq⟩, uq⟩.

hG
2 (q) = fh(OM (τM (q)))

= fh(OM (⟨sq, aq, uq⟩))
= fh(⟨Oa

•(sq), O
n
•(sq), O◦(sq), aq, uq⟩)

= ⟨⟨Oa
•(sq), O◦(sq)⟩, ⟨On

•(sq), O◦(sq),⊥⟩, aq, ⟨Oa
•(sq), O◦(sq)⟩, ⟨On

•(sq), O◦(sq), aq⟩, uq⟩
= hG(q).

Hence ∃t ∈ N : hG(t) ̸= hG
2 (t) is false. If q = n, the same result follows by removing everything from aq . We hence get that

fh(hM) = hG, so ∃hM ∈ HM , fh(hM) = hG, therefore fh is surjective.

fh is injective and surjective, hence fh is a bijection.

Lemma 3 (Bijection between agent and nature histories). Following Proposition 4, we get bijections for the agent and nature
histories by omitting the private objects of the other player. Let ga,h : Ha,M,⋉ → Ha,G,⋉ defined by:

ga,h(⟨za• , z◦⟩) = ⟨⟨za• , z◦⟩⟩.
ga,h(⟨za• , z◦, a⟩) = ⟨⟨za• , z◦⟩, a, ⟨za• , z◦⟩⟩.

ga,h(⟨za• , z◦, a, h′⟩) = ga,h(⟨za• , z◦, a⟩)⊕ ga,h(h′).

Let fa,h : Ha,M → Ha,G defined by:

fa,h(⟨za• , z◦⟩) = ⟨⟨za• , z◦⟩⟩.
fa,h(⟨za• , z◦, a⟩) = ⟨⟨za• , z◦⟩, a, ⟨za• , z◦⟩⟩.

fa,h(⟨za• , z◦, a, h′⟩) = fa,h(⟨za• , z◦, a⟩)⊕ ga,h(h′).

fa,h is a bijection.

Let gn,h : Hn,M,⋉ → Hn,G,⋉ defined by:

gn,h(⟨zn• , z◦⟩) = ⟨⟨zn• , z◦,⊥⟩⟩.
gn,h(⟨zn• , z◦, a, u⟩) = ⟨⟨zn• , z◦,⊥⟩, ⟨zn• , z◦, a⟩, u⟩.

gn,h(⟨zn• , z◦, a, u, h′⟩) = gn,h(⟨zn• , z◦, a, u⟩)⊕ gn,h(h′).

Let fn,h : Hn,M → Hn,G defined by:

fn,h(⟨zn• , z◦⟩) = ⟨⟨zn• , z◦,⊥⟩⟩.
fn,h(⟨zn• , z◦, a, u⟩) = ⟨⟨zn• , z◦,⊥⟩, ⟨zn• , z◦, a⟩, u⟩.

fn,h(⟨zn• , z◦, a, u, h′⟩) = fn,h(⟨zn• , z◦, a, u⟩)⊕ gn,h(h′).

fn,h is a bijection.

Corollary 2 (Corresponding histories). fh is a bijection between HM and HG, so the set of histories in the RPOMDP is
equivalent to the set of histories in the parameterized POSG:

HM ≃ HG,

where ∀hM ∈ HM ,∀hG ∈ HG.
hM ≃ hG ⇐⇒ fh(hM) = hG.

Similarly:
Ha,M ≃ Ha,G,

where ∀ha,M ∈ Ha,M ,∀ha,G ∈ Ha,G.

ha,M ≃ ha,G ⇐⇒ fa,h(ha,M) = ha,G.

And:
Hn,M ≃ Hn,G,

where ∀ha,M ∈ Ha,M ,∀ha,G ∈ Ha,G.

ha,M ≃ ha,G ⇐⇒ fa,h(ha,M) = ha,G.

Proposition 2 from the main text is a direct corollary of the bijections between histories established above. For completeness,
we repeat the proposition here.

Proposition 2 (Bijection between policies). Let fπ : ΠM → ΠG defined by:

fπ(πM)(ha,G) = πM ((fa,h)−1(ha,G)),

then fπ is a bijection.

Let fθ : ΘM → ΘG defined by:

fθ(θM)(hn,G, ⟨zn• , z◦, a⟩) = θM ((fn,h)−1(hn,G), a),

then fθ is a bijection.
Corollary 3 (Corresponding policies). fπ is a bijection between agent policies, so the set of agent policies in the RPOMDP is
equivalent to the set of agent policies in the parameterized POSG:

ΠM ≃ ΠG,

where ∀πM ∈ ΠM ,∀πG ∈ ΠG.
πM ≃ πG ⇐⇒ fπ(πM) = πG.

Similarly:
ΘM ≃ ΘG,

where ∀θM ∈ ΘM ,∀θG ∈ ΘG.
θM ≃ θG ⇐⇒ fθ(θM) = θG.

Theorem 2 (Equivalent values). Let M be an RPOMDP, and G the POSG of M . Let πM ∈ ΠM , πG = fπ(πM) ∈ ΠG be
corresponding agent policies, and θM ∈ ΘM , θG = fθ(θM) ∈ ΘG be corresponding nature policies. Then, their values for
the RPOMDP and POSG coincide:

V πM ,θM

ϕ = V πG,θG

ϕ .

Proof. We prove R(τM) = R(τG) for corresponding paths τM , τG. By definition of corresponding paths, we know that
∀t ∈ N.τG(t) = g(τM (t), u↪→

t−1).

R(τM) =
∑
t∈N

R(τM (t))

=
∑
t∈N

R(st, at, ut)

=
∑
t∈N

R(st, at)

=
∑
t∈N

R(⟨st, u↪→
t−1⟩, at)

=
∑
t∈N

R(⟨st, u↪→
t−1⟩, at, ⟨st, u↪→

t−1, at⟩, ut)

=
∑
t∈N

R(τG(t))

= R(τG).

Now, since joint corresponding policies πM , θM and πG, θG lead to the same distribution over corresponding paths, we know
that V πM ,θM

ϕ = V πG,θG

ϕ .

F.1 Mixed policies
Given the bijection between histories and stochastic policies, we can define a bijection between mixed policies similar to the
one between stochastic policies. Note that we apply the bijection between stochastic policies to deterministic policies.

Proposition 5 (Bijection between mixed policies). Let fπ,mix : ΠM,mix → ΠG,mix defined by:

fπ,mix(πM,mix)(πG,det) = πM,mix((fπ)−1(πG,det)),

then fπ,mix is a bijection.
Let fθ,mix : ΘM,mix → ΘG,mix defined by:

fθ,mix(θM,mix)(θG,det) = θM,mix((fθ)−1(θG,det)),

then fθ,mix is a bijection.

Corollary 4 (Corresponding mixed policies). fπ,mix is a bijection between agent policies, so the set of mixed agent policies in
the RPOMDP is equivalent to the set of mixed agent policies in the parameterized POSG:

ΠM,mix ≃ ΠG,mix,

where ∀πM,mix ∈ ΠM,mix,∀πG,mix ∈ ΠG,mix.

πM,mix ≃ πG,mix ⇐⇒ fπ,mix(πM,mix) = πG,mix.

Similarly:
ΘM,mix ≃ ΘG,mix,

where ∀θM,mix ∈ ΘM,mix,∀θG,mix ∈ ΘG,mix.

θM,mix ≃ θG,mix ⇐⇒ fθ,mix(θM,mix) = θG,mix.

Theorem 4 (Equivalent values mixed policies). Let M be an RPOMDP, and G the POSG of M . Let πM,mix ∈
ΠM,mix, πG,mix = fπ,mix(πM,mix) ∈ ΠG,mix be corresponding agent policies, and θM,mix ∈ ΘM,mix, θG,mix =
fθ,mix(θM,mix) ∈ ΘG,mix be corresponding nature policies. Then, their values for the RPOMDP and POSG coincide:

V πM,mix,θM,mix

ϕ = V πG,mix,θG,mix

ϕ .

The proof follows the same steps as for Theorem 2 for stochastic policies, where the distribution over corresponding paths now
follows from the same distribution over corresponding deterministic policies, which in turn leads to the same distributions over
corresponding paths.

F.2 Nature first
As explained in Appendix E, when reasoning with nature first semantics, the paths of the POSGs change. The bijections in this
appendix start from the bijection between paths. Below, we give the bijections for the nature first semantics that differ from the
bijections for the agent first semantics. The bijection proofs follow the same steps in the nature first case as in the agent first
case. We show the adjusted proof for the path bijection to illustrate how to deal with the delayed observation of the last agent
action.

Lemma 4 (Nature first bijection between paths). Let M be an RPOMDP, and G the POSG of M. There exists a bijection
f : PathsM → PathsG

Proof. Let PathsM,⋉ ⊆ (S × A × U)∗ × S? with ? ∈ {0, 1} be the set of all path segments in the RPOMDP,
and let PathsG,⋉ ⊆ Sn × An × Sa × Aa)∗ × (Sn)? with ? ∈ {0, 1} be the set of all path segments in the
POSG. With path segment we mean that the path can starts at any time steps t ∈ N and can end at any time step
t′ ∈ N, t <= t′. The optional last state is only used for path segments until the horizon. Note that PathsM ⊆ PathsM,⋉

and PathsG ⊆ PathsG,⋉. Let τM = ⟨s0, a0, u0, s1, . . . , sn⟩ ∈ PathsM and t ≤ n, then τM (t) indicates the t-th
segment ⟨st, at, ut⟩ of τM . Note that if t = n, the segment will only consist of the final state ⟨sn⟩. Similarly, let
τG = ⟨sn0 , an0 , sa0, aa0, sn1 , . . . , snn⟩ = ⟨⟨s0, u⊥,⊥⟩, u0, ⟨s0, u⊥, u0⟩, a0, ⟨s1, u↪→

1 , a0⟩, . . . , ⟨sn, u↪→
n , an−1⟩⟩ ∈ PathsG and t ≤ n,

then τG(t) indicates the t-th segment ⟨snt , ant , sat , aat ⟩ = ⟨⟨st, u↪→
t , at−1⟩, ut, ⟨st, u↪→

t , ut⟩, at⟩ of τG. Note that if t = n, the
segment will only consist of the final nature state ⟨san⟩ = ⟨⟨sn, u↪→

n , an−1⟩⟩.

Let g : PathsM,⋉ ×U ↪→ ×A ↪→ PathsG,⋉ defined by:

g(⟨s⟩, u↪→, a) = ⟨⟨s, u↪→, a′⟩⟩.

g(⟨s, a, u⟩, u↪→, a′) =
{
⟨⟨s, u↪→, a′⟩, u, ⟨s, u↪→, u⟩, a⟩ if u ∈ UP(u↪→),
⊥ otherwise.

g(⟨s, a, u⟩ ⊕ τM
′
, u↪→, a′) =

{
g(⟨s, a, u⟩, u↪→, a′)⊕ g(τM

′
, upd(u↪→, u,On

•(s), O◦(s), a), a) if u ∈ UP(u↪→),
⊥ otherwise.

Let f : PathsM → PathsG defined by:

f(⟨s⟩) = ⟨⟨s, u⊥,⊥⟩⟩.
f(⟨s, a, u⟩) = ⟨⟨s, u⊥,⊥⟩, u, ⟨s, u⊥, u⟩, a⟩.

f(⟨s, a, u⟩ ⊕ τM
′
) = f(⟨s, a, u⟩)⊕ g(τM

′
, upd(u⊥, u,On

•(s), O◦(s), a), a).

Where u⊥ ∈ U ↪→ is the totally undefined function. Note that the results of f and g are in PathsG and PathsG,⋉ by construction.
Also, note that any call to g that originated from a call in f will have a result by construction.

We show that f is a bijection, meaning f is injective and surjective. We first show f is injective, so we show that:

∀τ1,M , τ2,M ∈ PathsM .τ1,M ̸= τ2,M =⇒ f(τ1,M) ̸= f(τ2,M).

Given arbitrary τ1,M , τ2,M ∈ PathsM , we distinguish between the paths with superscripts 1 and 2, respectively. Assume
τ1,M ̸= τ2,M . If τ1,M and τ2,M do not have the same horizon length, then neither do f(τ1,M) and f(τ2,M). Then trivially,
f(τ1,M) ̸= f(τ2,M).

Assume τ1,M and τ2,M have the same horizon length n. Then ∃t ≤ n where τ1,M and τ2,M deviate, so τ1,M (t) ̸= τ2,M (t).
Let q be the smallest number where the paths deviate. So ∀t < q.τ1,M (t) = τ2,M (t) and τ1,M (q) ̸= τ2,M (q). Assume q < n.
Then we know ⟨s1q, a1q, u1

q⟩ ≠ ⟨s2q, a2q, u2
q⟩, which comes down to: s1q ̸= s2q ∨ a1q ̸= a2q ∨ u1

q ̸= u2
q .

f(τ1,M) = f(τ1,M (1)⊕ τ1,M
′
)

= τ1,G(1)⊕ g(τ1,M
′
, upd(u⊥, u1

0, O
n
•(s

1
0), O◦(s

1
0), a

1
0), a

1
0).

Unfold g until q:

=

q⊕
t=0

(τ1,G(t))⊕ ⟨⟨s1q, fix(τ
1,M
0:q), a1q−1⟩, u1

q, ⟨s1q, fix(τ
1,M
0:q), u1

q⟩, a1q⟩ ⊕ g(τ1,M
′′
, fix(τ1,M0:q+1), a

1
q)

Since s1q ̸= s2q ∨ a1q ̸= a2q ∨ u1
q ̸= u2

q:

̸=
q⊕

t=0

(τ1,G(t))⊕ ⟨⟨s2q, fix(τ
1,M
0:q), a1q−1⟩, u2

q, ⟨s2q, fix(τ
1,M
0:q), u2

q⟩, a2q⟩ ⊕ g(τ2,M
′′
, fix(τ1,M0:q+1), a

2
q)

=

q⊕
t=0

(τ2,G(t))⊕ ⟨⟨s2q, fix(τ2.M0:q), a2q−1⟩, u2
q, ⟨s2q, fix(τ

2,M
0:q), u2

q⟩, a2q⟩ ⊕ g(τ2,M
′′
, fix(τ2,M0:q+1), a

2
q).

Fold g until 1:

= τ2,G(1)⊕ g(τ2,M
′
, upd(u⊥, u2

0, O
n
•(s

2
0), O◦(s

2
0), a

2
0), a

2
0)

= f(τ2,M (1)⊕ τ2,M
′
)

= f(τ2,M).

If q = n, then the same result follows by removing everything after ⟨s1q, fix(τ
1,M
0:q), a1q−1⟩, ⟨s2q, fix(τ

1,M
0:q), a1q−1⟩, and

⟨s2q, fix(τ
2,M
0:q), a2q−1⟩. We thus have that f(τ1,M) ̸= f(τ2,M), so f is injective.

Next, we show that f is surjective, so we show that:

∀τG ∈ PathsG,∃τM ∈ PathsM .f(τM) = τG.

We show this holds by induction on the horizon length of the τG ∈ PathsG. We write the length of τG as |τG|.
Assume |τG| = 0. Then τG = ⟨sI , u⊥⟩. We have that for ⟨sI⟩ ∈ PathsM , f(⟨sI⟩) = ⟨⟨sI , u⊥⟩⟩ = τG. So for paths of horizon
length 0, f is surjective.

Now assume we know, given q ∈ N, q ≥ 1, that:

∀τG ∈ PathsG.|τG| = q − 1 =⇒ ∃τM ∈ PathsM : f(τM) = τG.

Take arbitrary τG ∈ PathsG with horizon length |τG| = q. Then we have τG = τG0:q−1 ⊕
⟨uq−1, ⟨sq−1, u

↪→
q−1, uq−1⟩, aq−1, ⟨sq, u↪→

q , aq−1⟩⟩. Then τG0:q−1 ∈ PathsG and |τG0:q−1| = q − 1. By assumption, we get that:

∃τM0:q−1 ∈ PathsM , f(τM0:q−1) = τG0:q−1.

Let τM0:q−1 ∈ PathsM such that f(τM0:q−1) = τG0:q−1. We then know that in τG:

∀t < q.u↪→
t = fix(τM0:t).

And, by Definition 18 and the definition of PathsG, that:

u↪→
q = upd(fix(τM0:q−1), uq−1, O

n
•(sq−1), O◦(sq−1), aq−1).

Let ⟨⟨sq−2, fix(τ
M
0:q−2), aq−3⟩, uq−2, ⟨sq−2, fix(τ

M
0:q−2), uq−2⟩, aq−2, ⟨sq−1, fix(τ

M
0:q−1), aq−2⟩⟩ be the last two segments of

τG0:q−1. Then by definition and injectivity of f , we know that the last two segments of τM0:q−1 are ⟨sq−2, aq−2, uq−2, sq−1⟩.

Now, by definition Definition 18 and the definition of PathsG, we know that:

τG = τG0:q−1 ⊕ ⟨uq−1, ⟨sq−1, u
↪→
q−1, uq−1⟩, aq−1, ⟨sq, u↪→

q , aq−1⟩⟩ ∈ PathsG

⇐⇒
τG0:q−1 ∈ PathsG ∧ T n(⟨sq−1, u

↪→
q−1, aq−2⟩, uq−1, ⟨sq−1, u

↪→
q−1, uq−1⟩) > 0

∧T a(⟨sq−1, u
↪→
q−1), uq−1⟩, aq−1, ⟨sq, u↪→

q , aq−1⟩) > 0

⇐⇒
τG0:q−1 ∈ PathsG ∧ uq−1 ∈ UP(u↪→

q−1) ∧ T (uq−1)(sq−1, aq−1, sq) > 0

⇐⇒
τG0:q−1 ∈ PathsG ∧ uq−1 ∈ UP(fix(τM0:q−1)) ∧ T (uq−1)(sq−1, aq−1, sq) > 0.

So, since τG ∈ PathsG, we know uq−1 ∈ UP(fix(τM0:q−1)) and T (uq−1)(sq−1, aq−1, sq) > 0, which are the restrictions for
τM = τM0:q−1 ⊕ ⟨aq−1, uq−1, sq⟩ ∈ PathsM to hold.

f(τM) = f(τM0:q−1 ⊕ ⟨aq−1, uq−1, sq⟩)

=

q−2⊕
t=0

τG0:q−1(t)⊕ g(⟨sq−1, aq−1, uq−1, sq⟩, fix(τM0:q−1), aq−2)

=

q−2⊕
t=0

τG0:q−1(t)⊕ g(⟨sq−1, aq−1, uq−1⟩, fix(τM0:q−1), aq−2)⊕ g(⟨sq⟩, fix(τM0:q), aq−1)

=

q−2⊕
t=0

τG0:q−1(t)⊕ g(⟨sq−1, aq−1, uq−1⟩, fix(τM0:q−1), aq−2)⊕ g(⟨sq⟩, upd(fix(τM0:q−1), uq−1, O
n
•(sq−1), O◦(sq−1), aq−1), aq−1)

=

q−2⊕
t=0

τG0:q−1(t)⊕ g(⟨sq−1, aq−1, uq−1⟩, fix(τM0:q−1), aq−2)⊕ g(⟨sq⟩, u↪→
q , aq−1)

=

q−2⊕
t=0

τG0:q−1(t)⊕ ⟨⟨sq−1, fix(τ
M
0:q−1), aq−2⟩, uq−1, ⟨sq−1, fix(τ

M
0:q−1), uq−1⟩, aq−1⟩ ⊕ g(⟨sq⟩, u↪→

q , aq−1)

=

q−2⊕
t=0

τG0:q−1(t)⊕ ⟨⟨sq−1, u
↪→
q−1, aq−2⟩, uq−1, ⟨sq−1, u

↪→
q−1, uq−1⟩, aq−1⟩ ⊕ g(⟨sq⟩, u↪→

q , aq−1)

= τG0:q−1 ⊕ ⟨uq−1, ⟨sq−1, u
↪→
q−1, uq−1⟩, aq−1⟩ ⊕ g(⟨sq⟩, u↪→

q , aq−1)

= τG0:q−1 ⊕ ⟨uq−1, ⟨sq−1, u
↪→
q−1, uq−1⟩, aq−1, ⟨sq, u↪→

q , aq−1⟩⟩
= τG.

So if f is surjective for paths of arbitrary length q − 1 ∈ N, f is surjective for paths of length q. Hence, by induction, f is
surjective.

f is injective and surjective, hence f is a bijection.

Corollary 5 (Nature first bijections between histories). Let gh : HM,⋉ ×A → HG,⋉ defined by:

gh(⟨za• , zn• , z◦⟩, a′) = ⟨⟨zn• , z◦, a′⟩, ⟨za• , z◦⟩⟩.
gh(⟨za• , zn• , z◦, a, u⟩, a′) = ⟨⟨zn• , z◦, a′⟩, ⟨za• , z◦⟩, u, ⟨zn• , z◦,⊥⟩, ⟨za• , z◦⟩, a⟩.

gh(⟨za• , zn• , z◦, a, u⟩ ⊕ h′, a′) = gh(⟨za• , zn• , z◦, a, u⟩,⊥)⊕ gh(h′, a).

Let fh : HM → HG defined by:

fh(⟨za• , zn• , z◦⟩) = ⟨⟨zn• , z◦,⊥⟩, ⟨za• , z◦⟩⟩.
fh(⟨za• , zn• , z◦, a, u⟩) = ⟨⟨zn• , z◦,⊥⟩, ⟨za• , z◦⟩, u, ⟨zn• , z◦,⊥⟩, ⟨za• , z◦⟩, a⟩.

fh(⟨za• , zn• , z◦, a, u⟩ ⊕ h′) = fh(⟨za• , zn• , z◦, a, u⟩)⊕ gh(h′, a).

Let ga,h : Ha,M,⋉ → Ha,G,⋉ defined by:

ga,h(⟨za• , z◦⟩) = ⟨⟨za• , z◦⟩⟩.
ga,h(⟨za• , z◦, a⟩) = ⟨⟨za• , z◦⟩, ⟨za• , z◦⟩, a⟩.

ga,h(⟨za• , z◦, a, h′⟩) = ga,h(⟨za• , z◦, a⟩)⊕ ga,h(h′).

Let fa,h : Ha,M → Ha,G defined by:

fa,h(⟨za• , z◦⟩) = ⟨⟨za• , z◦⟩⟩.
fa,h(⟨za• , z◦, a⟩) = ⟨⟨za• , z◦⟩, ⟨za• , z◦⟩, a⟩.

fa,h(⟨za• , z◦, a, h′⟩) = fa,h(⟨za• , z◦, a⟩)⊕ ga,h(h′).

fa,h is a bijection.

Let gn,h : Hn,M,⋉ ×A → Hn,G,⋉ defined by:

gn,h(⟨zn• , z◦⟩, a′) = ⟨⟨zn• , z◦, a′⟩⟩.
gn,h(⟨zn• , z◦, a, u⟩, a′) = ⟨⟨zn• , z◦, a′⟩, u, ⟨zn• , z◦,⊥⟩⟩.

gn,h(⟨zn• , z◦, a, u, h′⟩, a′) = gn,h(⟨zn• , z◦, a, u⟩, a′)⊕ gn,h(h′, a).

Let fn,h : Hn,M → Hn,G defined by:

fn,h(⟨zn• , z◦⟩) = ⟨⟨zn• , z◦,⊥⟩⟩.
fn,h(⟨zn• , z◦, a, u⟩) = ⟨⟨zn• , z◦,⊥⟩, u, ⟨zn• , z◦,⊥⟩⟩.

fn,h(⟨zn• , z◦, a, u, h′⟩) = fn,h(⟨zn• , z◦, a, u⟩)⊕ gn,h(h′, a).

fn,h is a bijection.

The bijection between stochastic nature policies no longer involves an extra state observation, whereas the bijection between
stochastic agent policy now does. Note that the extra agent state observation for the inverse function for the agent policy
bijection can be derived from the history input, as this observation is the same as the last nature state observation contained in
that history.
Corollary 6 (Bijection between policies). Let fπ : ΠM → ΠG defined by:

fπ(πM)(ha,G, ⟨za• , z◦⟩) = πM ((fa,h)−1(ha,G)),

then fπ is a bijection.

Let fθ : ΘM → ΘG defined by:
fθ(θM)(hn,G) = θM ((fn,h)−1(hn,G)),

then fθ is a bijection.

G Nash Equilibrium
This appendix contains all the proofs required to show the existence of a Nash equilibrium in our POSGs, i.e., Theorem 3,
restated below.
Theorem 3 (Existence of finite horizon Nash equilibrium). Let M be an RPOMDP and G the POSG of M . For the finite
horizon objective V π,θ

fh =
∑k−1

t=0 [rt | π, θ] we have the following saddle point condition in G:

sup
π∈ΠG

inf
θ∈ΘG

V π,θ
fh = inf

θ∈ΘG
sup
π∈ΠG

V π,θ
fh . (1)

From Equation (1), the existence of a Nash equilibrium in G follows immediately [Peters, 2015].

Throughout this appendix, we use the RPOMDP histories, paths, and policies, as these require simpler notation. We refer to
Appendix F for the bijections between the RPOMDP and POSG paths, histories, and policies.

G.1 Sufficient Statistic
Where in POMDPs the history of the agent is enough to reason optimally, this is not the case for RPODMPs and their equivalent
POSGs. Apart from their own history, the players must also consider all possible histories of the other player.
We adjust the notion of occupancy state used in [Delage et al., 2023] to work with the infinite nature action space of our
RPOMDP and equivalent POSGs. As mentioned in the introduction of this appendix, we use the RPOMDP notation. Given
π0:t−1 ∈ Π0:t−1, θ0:t−1 ∈ Θ0:t−1, [Delage et al., 2023] defines the occupancy state σ{π,θ}0:t−1

as the probability distribution
over all joint histories given agent and nature policies π0:t−1 and θ0:t−1.

∀ht ∈ Ht : σ{π,θ}0:t−1
(ht) = Pr(ht | π0:t−1, θ0:t−1).∑

ht∈Ht

σ{π,θ}0:t−1
(ht) = 1.

In the original definition of the occupancy state, nature’s action space is finite. This occupancy state is a sufficient statistic for
computing the next occupancy state and the expected reward at time t given the next πt and θt in their POSG models.
However, as we deal with an infinite action space, we must make adjustments to ensure the subset of joint histories for each
occupancy state is finite. Therefore, we keep track of nature’s policy to be able to generate the finite subset of joint histories
that the corresponding occupancy states have a distribution over.
Our version of the occupancy state extends the original occupancy state with the corresponding nature policy. Given π0:t−1 ∈
Π0:t−1, θ0:t−1 ∈ Θ0:t−1:

OS{π,θ}0:t−1

def
= ⟨σ{π,θ}0:t−1

, θ0:t−1⟩.
∀ht ∈ Ht : σ{π,θ}0:t−1

θ0:t−1(ht) = Pr(ht | π0:t−1, θ0:t−1).∑
ht∈Ht

σ{π,θ}0:t−1
(ht) = 1.

We show that the occupancy state OS{π,θ}0:t−1
together with agent and nature policies πt, θt at time t, is a sufficient statistic for

computing the next occupancy state OS{π,θ}0:t
and the expected reward R(OS{π,θ}0:t−1

, πt, θt) = E[rt | π0:t−1, πt, θ0:t−1, θt].
Note that these proofs are based on the proofs in Appendix B of [Delage et al., 2023].

OS{π,θ}0:t
(ht ⊕ ⟨at, ut, z

a
• , z

n
• , z◦⟩)

def
= ⟨σ{π,θ}0:t

(ht ⊕ ⟨at, ut, z
a
• , z

n
• , z◦⟩), θ0:t⟩.

Where:

θ0:t
def
= θ0:t−1 ⊕ θt.

σ{π,θ}0:t
(ht ⊕ ⟨at, ut, z

a
• , z

n
• , z◦⟩)

def
= Pr(ht, at, ut, z

a
• , z

n
• , z◦ | π0:t, θ0:t)

=
∑

s,s′∈S

Pr(ht, at, ut, z
a
• , z

n
• , z◦, s, s

′ | π0:t, θ0:t)

=
∑

s,s′∈S

Pr(za• , z
n
• , z◦ | ht, at, ut, s, s

′, π0:t, θ0:t) Pr(ht, at, ut, s, s
′ | π0:t, θ0:t).

The chance of an observation only depends on the state:

=
∑

s,s′∈S

Pr(za• , z
n
• , z◦ | s′) Pr(ht, at, ut, s, s

′ | π0:t, θ0:t)

=
∑

s,s′∈S

Pr(za• , z
n
• , z◦ | s′) Pr(s′ | ht, at, ut, s, π0:t, θ0:t) Pr(ht, at, ut, s | π0:t, θ0:t).

The chance of reaching a state only depends on the previous state and the agent and nature actions:

=
∑

s,s′∈S

Pr(za• , z
n
• , z◦ | s′) Pr(s′ | at, ut, s) Pr(ht, at, ut, s | π0:t, θ0:t)

=
∑

s,s′∈S

Pr(za• , z
n
• , z◦ | s′) Pr(s′ | at, ut, s) Pr(ut | ht, at, s, π0:t, θ0:t) Pr(ht, at, s | π0:t, θ0:t).

The chance of a nature action only depends on nature’s policy at time t, the history, and the agent action at time t:

=
∑

s,s′∈S

Pr(za• , z
n
• , z◦ | s′) Pr(s′ | at, ut, s) Pr(ut | ht, at, θt) Pr(ht, at, s | π0:t, θ0:t)

=
∑

s,s′∈S

Pr(za• , z
n
• , z◦ | s′) Pr(s′ | at, ut, s) Pr(ut | ht, at, θt) Pr(at | ht, s, π0:t, θ0:t) Pr(ht, s | π0:t, θ0:t).

The chance of an agent action only depends on the agent’s policy at time t, and the history:

=
∑

s,s′∈S

Pr(za• , z
n
• , z◦ | s′) Pr(s′ | at, ut, s) Pr(ut | ht, at, θt) Pr(at | ht, πt) Pr(ht, s | π0:t, θ0:t)

=
∑

s,s′∈S

Pr(za• , z
n
• , z◦ | s′) Pr(s′ | at, ut, s) Pr(ut | ht, at, θt) Pr(at | ht, πt) Pr(s | ht, π0:t, θ0:t) Pr(ht | π0:t, θ0:t).

The chance of being in a state can be computed via the belief generated by the joint history (see Appendix A.2):

=
∑

s,s′∈S

Pr(za• , z
n
• , z◦ | s′) Pr(s′ | at, ut, s) Pr(ut | ht, at, θt) Pr(at | ht, πt) Pr(s | ht) Pr(ht | π0:t, θ0:t).

The chance of a history at time t does not depend on actions of time t:

=
∑

s,s′∈S

Pr(za• , z
n
• , z◦ | s′) Pr(s′ | at, ut, s) Pr(ut | ht, at, θt) Pr(at | ht, πt) Pr(s | ht) Pr(ht | π0:t−1, θ0:t−1)

=
∑

s,s′∈S

Oa
•(s

′, za•)O
n
•(s

′, zn•)O◦(s
′, z◦) Pr(s

′ | at, ut, s) Pr(ut | ht, at, θt) Pr(at | ht, πt) Pr(s | ht) Pr(ht | π0:t, θ0:t)

=
∑

s,s′∈S

Oa
•(s

′, za•)O
n
•(s

′, zn•)O◦(s
′, z◦)T (ut)(s, at)(s

′) Pr(ut | ht, at, θt) Pr(at | ht, πt) Pr(s | ht) Pr(ht | π0:t, θ0:t)

=
∑

s,s′∈S

Oa
•(s

′, za•)O
n
•(s

′, zn•)O◦(s
′, z◦)T (ut)(s, at)(s

′)θt(h
n
t , at)(ut) Pr(at | ht, πt) Pr(s | ht) Pr(ht | π0:t, θ0:t)

=
∑

s,s′∈S

Oa
•(s

′, za•)O
n
•(s

′, zn•)O◦(s
′, z◦)T (ut)(s, at)(s

′)θt(h
n
t , at)(ut)πt(h

a
t)(at) Pr(s | ht) Pr(ht | π0:t, θ0:t)

=
∑

s,s′∈S

Oa
•(s

′, za•)O
n
•(s

′, zn•)O◦(s
′, z◦)T (ut)(s, at)(s

′)θt(h
n
t , at)(ut)πt(h

a
t)(at)b(s, ht) Pr(ht | π0:t, θ0:t).

Where b(s, ht) is the belief computed by t belief updates given the joint history ht (see Appendix A.2).

=
∑

s,s′∈S

Oa
•(s

′, za•)O
n
•(s

′, zn•)O◦(s
′, z◦)T (ut)(s, at)(s

′)θt(h
n
t , at)(ut)πt(h

a
t)(at)b(s, ht)σ{π,θ}0:t−1

(ht).

This shows that we can compute the successor occupancy state using only the previous occupancy state OS{π,θ}0:t−1
=

⟨σ{π,θ}0:t−1
, θ0:t−1⟩ and policies πt, θt at time t. Note that we can use the nature policy θ0:t to generate the finite subset

of relevant histories rel(θ0:t) ⊂ H that possibly have a non-zero probability. We can then select the relevant histories of t time
steps, denoted as rel(θ0:t)t ⊂ Ht, to compute the occupancy states. See Appendix A.2 for details on the set of relevant histories.
Next, we look at the expected reward.

E[rt | π0:t, θ0:t] =
∑
s∈S

∑
a∈A

R(s, a) Pr(s, a | π0:t, θ0:t)

=
∑
s∈S

∑
a∈A

R(s, a)
∑

ht∈rel(θ0:t−1)t

Pr(s, a, ht | π0:t, θ0:t)

=
∑
s∈S

∑
a∈A

R(s, a)
∑

ht∈rel(θ0:t−1)t

Pr(a | s, ht, π0:t, θ0:t) Pr(s, ht | π0:t, θ0:t).

The chance of an agent action only depends on the agents’s policy at time t, and the history:

=
∑
s∈S

∑
a∈A

R(s, a)
∑

ht∈rel(θ0:t−1)t

Pr(a | ht, πt) Pr(s, ht | π0:t, θ0:t)

=
∑
s∈S

∑
a∈A

R(s, a)
∑

ht∈rel(θ0:t−1)t

Pr(a | ht, πt) Pr(s | ht, π0:t, θ0:t) Pr(ht | π0:t, θ0:t).

The chance of being in a state can be computed via the belief generated by the joint history (see Appendix A.2):

=
∑
s∈S

∑
a∈A

R(s, a)
∑

ht∈rel(θ0:t−1)t

Pr(a | ht, πt) Pr(s | ht) Pr(ht | π0:t, θ0:t).

The chance of a history at time t does not depend on actions of time t:

=
∑
s∈S

∑
a∈A

R(s, a)
∑

ht∈rel(θ0:t−1)t

Pr(a | ht, πt) Pr(s | ht) Pr(ht | π0:t−1, θ0:t−1)

=
∑
s∈S

∑
a∈A

R(s, a)
∑

ht∈rel(θ0:t−1)t

πt(h
a
t)(a) Pr(s | ht) Pr(ht | π0:t−1, θ0:t−1)

=
∑
s∈S

∑
a∈A

R(s, a)
∑

ht∈rel(θ0:t−1)t

πt(h
a
t)(a)b(s, ht) Pr(ht | π0:t−1, θ0:t−1)

=
∑
s∈S

∑
a∈A

R(s, a)
∑

ht∈rel(θ0:t−1)t

πt(h
a
t)(a)b(s, ht)σ{π,θ}0:t−1

(ht).

This shows that we can compute the expected reward at time t using only the previous occupancy state OS{π,θ}0:t−1
=

(σ{π,θ}0:t−1
, θ0:t−1) and policy πt at time t.

Remark 5. The equivalent formulation of the occupancy state using POSG notation is as follows:

OS{π,θ}0:t
(ht ⊕ ⟨⟨za• , z◦⟩, ⟨zn• , z◦,⊥⟩, at, ⟨za• , z◦⟩, ⟨zn• , z◦, at⟩, ut⟩)

def
= ⟨σ{π,θ}0:t

(ht ⊕ ⟨⟨za• , z◦⟩, ⟨zn• , z◦,⊥⟩, at, ⟨za• , z◦⟩, ⟨zn• , z◦, at⟩, ut⟩), θ0:t⟩.

Where:

θ0:t
def
= θ0:t−1 ⊕ θt.

σ{π,θ}0:t
(ht ⊕ ⟨⟨za• , z◦⟩, ⟨zn• , z◦,⊥⟩, at, ⟨za• , z◦⟩, ⟨zn• , z◦, at⟩, ut⟩)

def
= Pr(ht, at, ut, z

a
• , z

n
• , z◦ | π0:t, θ0:t)

=
∑
s∈Sa

∑
s′∈Sa

Oa(s′, ⟨za• , z◦⟩)On(s′, ⟨zn• , z◦⟩)T n(T a(s, at), ut, s
′)θt(h

n
t , at)(ut)πt(h

a
t)(at)b(s, ht)σ{π,θ}0:t−1

(ht).

We can compute the expected reward as follows:

E[rt | π0:t, θ0:t] =
∑
s∈Sa

∑
a∈Aa

R(s, a)
∑

ht∈rel(θ0:t−1)t

πt(h
a
t)(a)b(s, ht)σ{π,θ}0:t−1

(ht).

This formulation again shows that the occupancy state OS{π,θ}0:t−1
together with agent and nature policies πt, θt at time t, is a

sufficient statistic for computing the next occupancy state OS{π,θ}0:t
and the expected reward R(OS{π,θ}0:t−1

, πt, θt).

G.2 Occupancy Game
Given the occupancy state, we can define a non-observable, non-stochastic game: a zero-sum occupancy game (OG) [Delage
et al., 2023]. As the occupancy state is a sufficient statistic, computing a Nash equilibrium in this OG is equivalent to a Nash
equilibrium in our original RPOMDP.

Definition 19 (Occupancy game). Given an RPOMDP ⟨S,A,T , R, Za
• , Z

n
• , Z◦, O

a
• , O

n
• , O◦, stick, a⟩, and a horizon K ∈ N,

we define the occupancy game as a tuple (Sa,Sn,Aa,An,T,R) where the sets of states and actions are defined as follows: Sa =⋃K−1
t=0

⋃
π0:t∈Π0:t

⋃
θ0:t∈Θ0:t

OS{π,θ}0:t
is the infinite set of agent states, and Sn =

⋃K−1
t=0 (

⋃
π0:t∈Π0:t

⋃
θ0:t∈Θ0:t

OS{π,θ}0:t
×

Πt+1) the infinite set of nature states; Aa =
⋃K−1

t=0 Πt is the infinite set of agent actions, and An =
⋃K−1

t=0 Θt the infinite set of
nature actions; The transition and reward functions are then defined as:

• T = Ta ∪ Tn, the transition function, where:
– Ta : Sa × Aa ↪→ Sn the agent’s transition function.
– Tn : Sn × An ↪→ Sa nature’s transition function.

• R : Sa × Aa → R the reward function.

Where:

• R(⟨σ{π,θ}0:t
, θ0:t⟩, πt+1) =

∑
s∈S

∑
a∈A R(s, a)

∑
ht∈rel(θ0:t−1)t

πt(h
a
t , a)b(s, ht)σ{π,θ}0:t−1

(ht).

• Ta(⟨σ{π,θ}0:t
, θ0:t⟩, πt+1) = ⟨⟨σ{π,θ}0:t

, θ0:t⟩, πt+1⟩.
• Tn(⟨⟨σ{π,θ}0:t

, θ0:t⟩, πt+1⟩, θt+1) = ⟨σ{π,θ}0:t+1
, θ0:t+1⟩, where:

– θ0:t+1 = θ0:t ⊕ θt+1.
– ∀ht+1 ∈ rel(θ0:t)t+1,∀a ∈ Aa,∀u ∈ An,∀za• , zn• , z◦ ∈ Za

• × Zn
• × Z◦, σ{π,θ}0:t+1

(⟨ht+1, a, u, z
a
• , z

n
• , z◦⟩) =∑

s,s′∈S

Oa
•(s

′, za•)O
n
•(s

′, zn•)O◦(s
′, z◦)T (ut)(s, at)(s

′)θt(h
n
t , at)(ut)πt(h

a
t)(at)b(s, ht)σ{π,θ}0:t−1

(ht).

Where b(s, ht) is the belief computed by t belief updates given the joint history ht (see Appendix A.2). For deriving the reward
and transition functions, see Appendix G.1.

G.3 Mixed policies
As shown in Appendix G.1, the occupancy state is a sufficient statistic for the POSG and, hence, for the RPOMDP. In ap-
pendix G.4, we show that the occupancy game has a Nash equilibrium for finite horizon reward maximization, and an optimal
policy for the agent exists. To prove that this Nash equilibrium exists, we need to reason with mixed policies instead of stochas-
tic policies. In this section, we prove that reasoning with the set of mixed agent and nature policies results in the same set of
distributions over paths, and hence the same possible values, as reasoning with the set of stochastic policies.
Concretely, we need to show that for every stochastic policy, there exists a mixed policy that behaves equivalently, meaning it
results in the same distribution over paths. We focus on the RPOMDP policies. The same results follow for the POSG policies
using the bijections from Appendix F.

Theorem 5 (Existence of equivalent mixed policy). Let µπ,θ ∈ ∆(PathsM) be the probability distribution over paths in the
RPOMDP resulting from executing agent policy π and nature policy θ. Then:

∀π ∈ Π,∃πmix ∈ Πmix,∀θ ∈ Θ ∪Θmix. µπ,θ = µπmix,θ,

∀θ ∈ Θ,∃θmix ∈ Θmix,∀π ∈ Π ∪Πmix. µπ,θ = µπ,θmix

.

Before proving the theorem above, we consider the other key results that follow. We immediately get the following corollary
from Theorem 5.
Corollary 7 (stochastic policies ⊆ mixed policies). Let µπ,θ ∈ ∆(PathsM) be the probability distribution over paths in the
RPOMDP resulting from executing agent policy π and nature policy θ. Then we have the following:

{µπ,θ | π ∈ Π, θ ∈ Θ} ⊆ {µπmix,θmix

| πmix ∈ Πmix, θmix ∈ Θmix}.

We also need to show that for every mixed policy, there exists a stochastic policy that behaves equivalently. This means that
there are no new behaviors, and consequently no new values, introduced by looking at the set of mixed policies.

Theorem 6 (Existence of equivalent stochastic policy). Let µπ,θ ∈ ∆(PathsM) be the probability distribution over paths in the
RPOMDP resulting from executing agent policy π and nature policy θ. Then:

∀πmix ∈ Πmix,∃π ∈ Π,∀θ ∈ Θ ∪Θmix.µπmix,θ = µπ,θ,

∀θmix ∈ Θmix,∃θ ∈ Θ,∀π ∈ Π ∪Πmix. µπ,θmix

= µπ,θ.

Theorem 6 comes with the following corollary.

Corollary 8 (stochastic policies ⊇ mixed policies). Let µπ,θ ∈ ∆(PathsM) be the probability distribution over paths in the
RPOMDP resulting from executing agent policy π and nature policy θ. Then we have the following:

{µπ,θ | π ∈ Π, θ ∈ Θ} ⊇ {µπmix,θmix

| πmix ∈ Πmix, θmix ∈ Θmix}.

By combining Corollaries 7 and 8, it follows that the sets of mixed policies give exactly the same sets of distributions over paths
in our original RPOMDP as the sets of stochastic policies do.

Corollary 9 (Equivalent set of mixed policies). Let µπ,θ ∈ ∆(PathsM) be the probability distribution over paths in the
RPOMDP resulting from executing agent policy π and nature policy θ. Then we have the following:

{µπ,θ | π ∈ Π, θ ∈ Θ} = {µπmix,θmix

| πmix ∈ Πmix, θmix ∈ Θmix}.
It follows that the sets of possible values, i.e., the subset of R the value function can attain under all stochastic policies and all
mixed policies, is the same:

{V π,θ | π ∈ Π, θ ∈ Θ} = {V πmix,θmix

| πmix ∈ Πmix, θmix ∈ Θmix}.

Below, we first define some definitions and lemmas and then prove Theorems 5 and 6. We focus on the nature policies, as these
require dealing with an infinite action space and, therefore, with an infinite set of deterministic policies. The proofs for the
agent policies follow the same steps.

Additional definitions and lemmas
We begin by defining the set of relevant histories given a policy. The actions chosen for histories outside the relevant history
set do not influence the results of a game since the policy never reaches them.
Using the relevant histories, we can define the set of relevant deterministic policies given a history.
Definition 20 (Relevant deterministic policies). Given a history hn ∈ Hn, we define the set of relevant deterministic policies
Θdet,h, containing all deterministic policies that could have generated the current history.

Θdet,hn

= {θdet ∈ Θdet | hn ∈ reln(θdet)}.

We define a helper function ηπ,θ : ∆(PathsM) to compute the probability over paths for all stochastic and deterministic policies
π ∈ Π and θ ∈ Θ:

ηπ,θ(⟨sI⟩) = 1,

ηπ,θ(τ ′ ⊕ ⟨s, a, u, s′⟩) = ηπ,θ(τ ′ ⊕ ⟨s⟩) · π(Oa,M (τ ′ ⊕ ⟨s⟩))(a) · θ(On,M (τ ′ ⊕ ⟨s⟩), a)(u) · T (u)(s, a, s′).

We now prove the following lemmas about the probability distribution over paths for deterministic policies.
Given a path, if a deterministic policy is not relevant for generating the history of that path, then the probability of reaching that
path with the deterministic policy is zero.
Lemma 5 (Zero probability of non-relevant paths). Given a path τ and policies π ∈ Π, θdet ∈ Θdet, we have that:

θdet /∈ Θdet,On,M (τ) =⇒ ηπ,θ
det

(τ) = 0.

Proof. Take arbitrary path τ and policies π ∈ Π, θdet ∈ Θdet.

θdet /∈ Θdet,On,M (τ) ⇐⇒ On,M (τ) /∈ reln(θdet).

By definition, we know that On,M (⟨sI⟩) ∈ reln(θdet). Furthermore, we know that:

On,M (τ ′ ⊕ ⟨a′, u′, s⟩) /∈ reln(θdet) ⇐⇒ θdet(On,M (τ ′), a′) ̸= u′ ∨On,M (τ ′) /∈ reln(θdet).

Since On,M (⟨sI⟩) ∈ reln(θdet), we will eventually reach a prefix of τ , for which the condition is violated. So then we get:

On,M (τ) /∈ reln(θdet) ⇐⇒ ∃τ ′′. τ ′′ ⊕ ⟨a′′, u′′, s′, . . .⟩ = τ ∧ θdet(On,M (τ ′′), a′′) ̸= u′′

⇐⇒ ∃τ ′′. τ ′′ ⊕ ⟨a′′, u′′, s′, . . .⟩ = τ ∧ θdet(On,M (τ ′′), a′′)(u′′) = 0

=⇒ ∃τ ′′. τ ′′ ⊕ ⟨a′′, u′′, s′, . . .⟩ = τ ∧ ηπ,θ
det

(τ ′′ ⊕ ⟨a′′, u′′, s′⟩) = 0

=⇒ ηπ,θ
det

(τ) = 0.

Hence:
θdet /∈ Θdet,On,M (τ) =⇒ ηπ,θ

det

(τ) = 0.

The next lemma states that, given a path, if two deterministic policies are both relevant for generating the history of that path,
then the probability of reaching that path is the same for both policies.
Lemma 6 (Constant probability of paths for relevant deterministic policies). Given a path τ and policy π ∈ Π, we have that:

∀θdet, θdet
′
∈ Θdet,On,M (τ). ηπ,θ

det

(τ) = ηπ,θ
det′

(τ).

Proof. Take arbitrary path τ , policy π ∈ Π and θdet, θdet
′ ∈ Θdet,On,M (τ). We show ηπ,θ

det

(τ) = ηπ,θ
det′

(τ) by induction on
the length of τ .
Assume |τ | = 0. Then τ = ⟨sI⟩. Then:

ηπ,θ
det

(⟨sI⟩) = 1 = ηπ,θ
det′

(⟨sI⟩).

So for paths τ of length 0, we know that ηπ,θ
det

(τ) = ηπ,θ
det′

(τ).
Now assume we know, given q ∈ N, q ≥ 1, that:

∀τ ∈ PathsM .|τ | = q − 1 =⇒ ηπ,θ
det

(τ) = ηπ,θ
det′

(τ).

Take arbitrary τ ∈ PathsM with horizon length |τ | = q. Then we have:

τ = τ0:q−1 ⊕ ⟨aq−1, uq−1, sq⟩ = τ0:q−2 ⊕ ⟨aq−2, uq−2, sq−1, aq−1, uq−1, sq⟩.

Then τ0:q−1 ∈ PathsM and |τ0:q−1| = q − 1. By assumption, we get that:

ηπ,θ
det

(τ0:q−1) = ηπ,θ
det′

(τ0:q−1).

Additionally, we know that:

θdet ∈ Θdet,On,M (τ) ⇐⇒ On,M (τ) ∈ reln(θdet)

⇐⇒ θdet(On,M (τ0:q−1), aq−1) = uq−1 ∧On,M (τ0:q−1) ∈ reln(θdet)

⇐⇒ θdet(On,M (τ0:q−1), aq−1)(uq−1) = 1 ∧On,M (τ0:q−1) ∈ reln(θdet).

So we have that:
θdet(On,M (τ0:q−1), aq−1)(uq−1) = 1 = θdet

′
(On,M (τ0:q−1), aq−1)(uq−1).

Finally, we get:

ηπ,θ
det

(τ) = ηπ,θ
det

(τ0:q−1) · π(Oa,M (τ0:q−1))(aq−1) · θdet(On,M (τ0:q−1), aq−1)(uq−1) · T (uq−1)(sq−1, aq−1, sq)

= ηπ,θ
det′

(τ0:q−1) · π(Oa,M (τ0:q−1))(aq−1) · θdet
′
(On,M (τ0:q−1), aq−1)(uq−1) · T (uq−1)(sq−1, aq−1, sq)

= ηπ,θ
det′

(τ).

So, if ηπ,θ
det

(τ) = ηπ,θ
det′

(τ) holds for paths of arbitrary length q − 1 ∈ N, then ηπ,θ
det

(τ) = ηπ,θ
det′

(τ) holds for paths of
length q. Hence, by induction, ηπ,θ

det

(τ) = ηπ,θ
det′

(τ).

As θdet, θdet
′ ∈ Θdet,On,M (τ) were arbitrarily chosen, we conclude that:

∀θdet, θdet
′
∈ Θdet,On,M (τ). ηπ,θ

det

(τ) = ηπ,θ
det′

(τ).

Using our helper function η, we can define the four ways of computing the probability distribution over paths depending on the
type of policies involved as follows:

(1) π ∈ Π and θ ∈ Θ:

µπ,θ(τ) = ηπ,θ(τ).

(2) π ∈ Π and θmix ∈ Θmix:

µπ,θmix

(τ) =
∑

θdet∈Θdet

θmix(θdet) · ηπ,θ
det

(τ).

(3) πmix ∈ Πmix and θ ∈ Θ:

µπmix,θ(τ) =
∑

πdet∈Πdet

πmix(πdet) · ηπ
det,θ(τ).

(4) πmix ∈ Πmix and θmix ∈ Θmix:

µπmix,θmix

(τ) =
∑

πdet∈Πdet

πmix(πdet) ·
∑

θdet∈Θdet

θmix(θdet) · ηπ
det,θdet

(τ),

=
∑

πdet∈Πdet

∑
θdet∈Θdet

πmix(πdet) · θmix(θdet) · ηπ
det,θdet

(τ).

Recall that a deterministic policy can be interpreted as both a stochastic and a mixed policy using only Dirac distributions. The
probabilities over paths generated by deterministic policies can, therefore, be computed using any of the above formulas.

Proof of Theorem 5
The standard way to define a mixed strategy given a stochastic strategy is to simply assign to each deterministic policy the
product of the probabilities the stochastic policy assigns to the same choices [Kuhn, 1953]. The problem in our case, however,
is that, due to the infinite number of nature policies, this leads to infinitely many deterministic policies having a non-zero
probability in the resulting mixed policy.
To create a mixed policy with a finite number of deterministic policies with a non-zero probability, we define an equivalence
class for deterministic policies that assign the same action for all histories that are relevant to the given stochastic policy.
Definition 21. Given a stochastic policy θ ∈ Θ, we define the following equivalence relation ∼reln(θ) between deterministic
policies, which we call reln(θ)-equivalent:

∀θdet, θdet
′
∈ Θdet. θdet∼reln(θ)θ

det′ ⇐⇒ ∀hn ∈ reln(θ),∀a ∈ A. θdet(hn, a) = θdet
′
(hn, a).

The reflexivity, symmetry, and transitivity of the reln(θ)-equivalence relation follow from the reflexivity, symmetry, and transi-
tivity of the equality relation.

The reln(θ)-equivalence relation provides us with reln(θ)-equivalence classes [θdet]∼reln(θ)
, which partition the set of deter-

ministic policies. We select one member of each reln(θ)-equivalence class to define a new set θdet,∼reln(θ) called the reln(θ)-
representation set. Note that this set is not the same as the quotient set Θdet/∼reln(θ), as the quotient set is a set of sets of
deterministic policies, whereas the reln(θ)-representation set is a set of deterministic policies. Clearly, Θdet/∼reln(θ) ⊆ Θdet.

Using the reln(θ)-representation set, we define a function g : Θ → Θmix with which we will construct our equivalent mixed
policy. This function uses a similar construction as in [Kuhn, 1953] for the deterministic policies in the reln(θ)-representation
set but gives the rest of the deterministic policies a zero probability automatically.

g(θ)(θdet) =

{∏
hn∈reln(θ),a∈A θ(h, a)(θdet(hn, a)) if θdet ∈ Θdet,∼reln(θ) ,

0 otherwise.

We first show that g correctly maps to a mixed policy (Lemma 7) and then that this resulting policy results in the same
distribution over paths in the RPOMDP given any agent policy (Lemma 8).
Lemma 7. g(θ) is a mixed policy:

∀θ ∈ Θ. g(θ) ∈ Θmix.

Proof. Take arbitrary θ ∈ Θ. By construction, we have that g(θ) : Θdet → [0, 1]. Now to show that g(θ) ∈ Θmix, we must
show two things: g(θ) assigns a non-zero probability to a finite number of deterministic policies (finitely randomizing) and
g(θ) is a probability distribution, meaning the probabilities sum up to 1.

g(θ) is finitely randomizing, (2)∑
θdet∈Θdet

g(θ)(θdet) = 1. (3)

When proving Equation (2), we can restrict ourselves to θdet ∈ Θdet,∼reln(θ) , as we assign a zero probability to all other
deterministic policies. There can be infinitely many reln(θ)-equivalence classes and, therefore, infinitely many elements of
Θdet,∼reln(θ) . However, we know that there is a finite number of nature histories in reln(θ) since θ is finitely randomizing,
Zn
• , Z◦, and A are finite, and we consider a finite horizon. Furthermore, we know that because θ is finitely randomizing, there

are only finitely many u that can be chosen by the deterministic policies at each history action pair hn, a for which θ(hn, a)(u)
gives a non-zero probability. Due to the reln(θ)-equivalence classes, we only have one deterministic policy per unique choice
combination for all relevant histories. Combining this with the fact that there are a finite number of choices that give a non-zero
probability, we can conclude that there is a finite number of deterministic policies that give a non-zero probability.
Equation (3) follows from the fact that, by construction, there is exactly one deterministic policy with a non-zero probability for
each choice combination of choices available in the stochastic policies over all relevant nature histories of that stochastic policy.
Each of these deterministic policies is assigned the product of the probabilities assigned to the same choices by the stochastic
policy for the relevant nature histories. Summing over the deterministic policies will hence equal summing over the product of
the probabilities assigned to the choices by the stochastic policy for the relevant nature histories. Since the stochastic policy
assigns a probability distribution over its choices for each relevant nature history, we also get that:∑

θdet∈Θdet

g(θ)(θdet) = 1.

The following lemma is the last but vital ingredient towards the proof of Theorem 5.
Lemma 8. g(θ) equivalent to θ:

∀θ ∈ Θ,∀π ∈ Π ∪Πmix. µπ,θ = µπ,g(θ).

Proof. Take arbitrary θ ∈ Θ. We show ∀π ∈ Π ∪ Πmix,∀τ ∈ PathsM . µπ,θ(τ) = µπ,g(θ)(τ) by induction on the length of the
path τ . We write the length of τ as |τ |.
Assume |τ | = 0. Then τ = ⟨sI⟩. Then we have for π ∈ Π:

µπ,θ(⟨sI⟩) = ηπ,θ(⟨sI⟩)
= 1

=
∑

θdet∈Θdet

g(θ)(θdet) · 1

=
∑

θdet∈Θdet

g(θ)(θdet) · ηπ,θ
det

(⟨sI⟩)

= µπ,g(θ)(⟨sI⟩).

And for πmix ∈ Πmix:

µπmix,θ(⟨sI⟩) =
∑

πdet∈Πdet

πmix(πdet) · ηπ,θ(⟨sI⟩)

=
∑

πdet∈Πdet

πmix(πdet) · 1

=
∑

πdet∈Πdet

πmix(πdet) ·
∑

θdet∈Θdet

g(θ)(θdet) · 1

=
∑

πdet∈Πdet

πmix(πdet) ·
∑

θdet∈Θdet

g(θ)(θdet) · ηπ,θ
det

(⟨sI⟩)

= µπmix,g(θ)(⟨sI⟩).

So for paths τ of length 0, we know that ∀π ∈ Π ∪Πmix. µπ,θ(τ) = µπ,g(θ)(τ).
Now assume we know, given q ∈ N, q ≥ 1, that:

∀τ ∈ PathsM .|τ | = q − 1 =⇒ ∀π ∈ Π ∪Πmix. µπ,θ(τ) = µπ,g(θ)(τ).

Take arbitrary τ ∈ PathsM with horizon length |τ | = q. Then we have:

τ = τ0:q−1 ⊕ ⟨aq−1, uq−1, sq⟩ = τ0:q−2 ⊕ ⟨aq−2, uq−2, sq−1, aq−1, uq−1, sq⟩.

Then τ0:q−1 ∈ PathsM and |τ0:q−1| = q − 1. By assumption, we get that:

∀π ∈ Π ∪Πmix. µπ,θ(τ0:q−1) = µπ,g(θ)(τ0:q−1).

We need to distinguish two cases for the proof: π ∈ Π and π ∈ Πmix. We write out the more complicated case of mixed agent
policies π ∈ Πmix. The proof for stochastic agent policies follows along the same lines. We highlight subtle changes in the
equations using either blue or red text.

µπmix,θ(τ) =
∑

πdet∈Πdet

πmix(πdet) · ηπdet,θ(τ).

Unfolding ηπdet,θ(τ):

=
∑

πdet∈Πdet

πmix(πdet) · ηπdet,θ(τ0:q−1) · πdet(Oa,M (τ0:q−1))(aq−1) · θ(On,M (τ0:q−1), aq−1)(uq−1) ·

T (uq−1)(sq−1, aq−1, sq).

Reordering:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) · ηπdet,θ(τ0:q−1) ·

θ(On,M (τ0:q−1), aq−1)(uq−1).

Using the definition of µ for deterministic or stochastic agent and nature policies:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) · µπdet,θ(τ0:q−1) ·

θ(On,M (τ0:q−1), aq−1)(uq−1).

Using our assumption ∀π ∈ Π ∪Πmix. µπ,θ(τ0:q−1) = µπ,g(θ)(τ0:q−1), we get:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) · µπdet,g(θ)(τ0:q−1) ·

θ(On,M (τ0:q−1), aq−1)(uq−1).

Unfolding the definition of µ for deterministic or stochastic agent policies and mixed nature policies:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) ·
∑

θdet∈Θdet

g(θ)(θdet) · ηπdet,θdet(τ0:q−1) ·

θ(On,M (τ0:q−1), aq−1)(uq−1).

Multiplying by a term equal to 1:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) ·
∑

θdet∈Θdet

g(θ)(θdet) · ηπdet,θdet(τ0:q−1) ·

θ(On,M (τ0:q−1), aq−1)(uq−1) ·
θ(On,M (τ0:q−1), aq−1)(uq−1)

θ(On,M (τ0:q−1), aq−1)(uq−1)
.

Using that g(θ) is a probability distribution over the set of deterministic policies, we get:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) ·
∑

θdet∈Θdet

g(θ)(θdet) · ηπdet,θdet(τ0:q−1) ·

θ(On,M (τ0:q−1), aq−1)(uq−1) ·
θ(On,M (τ0:q−1), aq−1)(uq−1)∑

θdet∈Θdet g(θ)(θdet) · θ(On,M (τ0:q−1), aq−1)(uq−1)
.

Using that Θdet,∼reln(θ) contains exactly one deterministic policy for each choice combination of available choices for θ for each history
relevant for θ, we get:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) ·
∑

θdet∈Θdet

g(θ)(θdet) · ηπdet,θdet(τ0:q−1) ·

θ(On,M (τ0:q−1), aq−1)(uq−1) ·
∑

θdet∈Θ
det,∼reln(θ)

∏
hn∈reln(θ),a∈A θ(hn, a)(θdet(hn, a)) · θdet(On,M (τ0:q−1), aq−1)(uq−1)∑

θdet∈Θdet g(θ)(θdet) · θ(On,M (τ0:q−1), aq−1)(uq−1)
.

Using the definition of g:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) ·
∑

θdet∈Θdet

g(θ)(θdet) · ηπdet,θdet(τ0:q−1) ·

θ(On,M (τ0:q−1), aq−1)(uq−1) ·
∑

θdet∈Θ
det,∼reln(θ)

g(θ)(θdet) · θdet(On,M (τ0:q−1), aq−1)(uq−1)∑
θdet∈Θdet g(θ)(θdet) · θ(On,M (τ0:q−1), aq−1)(uq−1)

.

Let θdet
′

be an arbitrary deterministic policy in the set of relevant deterministic policies Θdet,On,M (τ0:q−1), we get:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) ·
∑

θdet∈Θdet

g(θ)(θdet) · ηπdet,θdet(τ0:q−1) ·

θ(On,M (τ0:q−1), aq−1)(uq−1) ·
ηπdet,θdet

′
(τ0:q−1) ·

∑
θdet∈Θ

det,∼reln(θ)
g(θ)(θdet) · θdet(On,M (τ0:q−1), aq−1)(uq−1)

ηπdet,θdet
′
(τ0:q−1) ·

∑
θdet∈Θdet g(θ)(θdet) · θ(On,M (τ0:q−1), aq−1)(uq−1)

.

Using Lemmas 5 and 6 and the fact that g(θ)(θdet) = 0 when θdet /∈ Θdet,∼reln(θ) , we get that:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) ·
∑

θdet∈Θdet

g(θ)(θdet) · ηπdet,θdet(τ0:q−1) ·

θ(On,M (τ0:q−1), aq−1)(uq−1) ·
∑

θdet∈Θ
det,∼reln(θ)

g(θ)(θdet) · ηπdet,θdet(τ0:q−1) · θdet(On,M (τ0:q−1), aq−1)(uq−1)∑
θdet∈Θdet g(θ)(θdet) · ηπdet,θdet(τ0:q−1) · θ(On,M (τ0:q−1), aq−1)(uq−1)

.

The denominator of the fraction is now equal to a term it is multiplied by:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) ·

∑
θdet∈Θ

det,∼reln(θ)

g(θ)(θdet) · ηπdet,θdet(τ0:q−1) · θdet(On,M (τ0:q−1), aq−1)(uq−1).

Using that ∀θdet ∈ Θdet\Θdet,∼reln(θ) . g(θ)(θdet) = 0 by definition, we get that:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) ·
∑

θdet∈Θdet

g(θ)(θdet) · ηπdet,θdet(τ0:q−1) ·

θdet(On,M (τ0:q−1), aq−1)(uq−1).

Reordering:

=
∑

πdet∈Πdet

πmix(πdet) ·
∑

θdet∈Θdet

g(θ)(θdet) · ηπdet,θdet(τ0:q−1) · πdet(Oa,M (τ0:q−1))(aq−1) ·

θdet(On,M (τ0:q−1), aq−1)(uq−1) · T (uq−1)(sq−1, aq−1, sq).

Folding ηπdet,θdet(τ):

=
∑

πdet∈Πdet

πmix(πdet) ·
∑

θdet∈Θdet

g(θ)(θdet) · ηπdet,θdet(τ).

Using the definition of µ for mixed agent and nature policies:

= µπmix,g(θ)(τ).

So if ∀π ∈ Π∪Πmix. µπ,θ(τ) = µπ,g(θ)(τ) holds for paths of arbitrary length q−1 ∈ N, ∀π ∈ Π∪Πmix. µπ,θ(τ) = µπ,g(θ)(τ)

holds for paths of length q. Hence, by induction, ∀τ ∈ PathsM ,∀π ∈ Π ∪Πmix. µπ,θ(τ) = µπ,g(θ)(τ).
As θ ∈ Θ was arbitrarily chosen, we conclude that:

∀θ ∈ Θ,∀π ∈ Π ∪Πmix. µπ,θ = µπ,g(θ).

We can now prove the nature case of Theorem 5:

Theorem 5 (Existence of equivalent mixed policy). Let µπ,θ ∈ ∆(PathsM) be the probability distribution over paths in the
RPOMDP resulting from executing agent policy π and nature policy θ. Then:

∀π ∈ Π,∃πmix ∈ Πmix,∀θ ∈ Θ ∪Θmix. µπ,θ = µπmix,θ,

∀θ ∈ Θ,∃θmix ∈ Θmix,∀π ∈ Π ∪Πmix. µπ,θ = µπ,θmix

.

Proof. Take arbitrary θ ∈ Θ. By Lemma 7, we know that:

g(θ) ∈ Θmix.

Furthermore, by Lemma 8, we know that:
∀π ∈ Π ∪Πmix. µπ,θ = µπ,g(θ).

Hence, we know that:
∃θmix ∈ Θmix,∀π ∈ Π ∪Πmix. µπ,θ = µπ,θmix

.

As θ ∈ Θ was arbitrarily chosen, we conclude that:

∀θ ∈ Θ,∃θmix ∈ Θmix,∀π ∈ Π ∪Πmix. µπ,θ = µπ,θmix

.

Proof of Theorem 6
We define a function f : Θmix → Θ with which we will construct our equivalent stochastic policy. This function follows the
construction used in [Kuhn, 1953]. Note that we cannot directly apply Kuhn’s theorem, as our game is not finite. If a nature
history is relevant for the mixed policy, the probability for each choice in the resulting stochastic policy will only take the
probability of deterministic policies that can reach that nature history into account. Nature histories that are not relevant for the
mixed policy will also not be relevant for the resulting policy, so for those histories, we can just look at the probability of all
deterministic policies.

f(θmix)(hn, a)(u) =

∑

θdet∈Θdet,hn θdet(hn, a)(u) · θmix(θdet)∑
θdet∈Θdet,hn θmix(θdet)

if hn ∈ reln(θmix),

∑
θdet∈Θdet θdet(hn, a)(u) · θmix(θdet) if hn ̸∈ reln(θmix).

where

θdet(hn, a)(u) =

{
1 if θdet(hn, a) = u,

0 otherwise.

We first show that f correctly maps to a stochastic policy (Lemma 9) and then that this resulting policy results in the same
distribution over paths in the RPOMDP given any agent policy (Lemma 10).
Lemma 9 (f(θmix) is a stochastic policy).

∀θmix ∈ Θmix. f(θmix) ∈ Θ.

Proof. Take arbitrary θmix ∈ Θmix. By construction, we have that f(θmix) ∈ Hn × A → ∆(U). Now to show that
f(θmix) ∈ Θ, we must show two things: f(θmix) assigns a non-zero probability to a finite number of variable assignments
(finitely randomizing) and f(θmix) is valid, meaning it adheres to the stickiness restrictions (see Section 3.1).

∀hn ∈ Hn,∀a ∈ A.f(θmix)(hn, a) is finitely randomizing, (4)

∀hn ∈ Hn,∀a ∈ A,∀u ∈ f(θmix)(hn, a).u ∈ UP(fix(hn)). (5)

Equation (4) follows from θmix being finitely randomizing by definition. Every choice in f(θmix) assigns a non-zero probabil-
ity to a number of variable assignments less than or equal to the number of the deterministic policies with a non-zero probability
in the mixed policy. As this number of deterministic policies is finite, the resulting policy f(θmix) is finitely randomizing.
Equation (5) follows from the fact that the deterministic policies used to construct f(θmix) are valid policies by definition, so
we have

∀θdet ∈ Θdet,∀hn ∈ Hn,∀a ∈ A, θdet(hn, a) ∈ UP(fix(hn)).

Combining this with the fact that

∀hn ∈ Hn,∀a ∈ A,∀u ∈ f(θmix)(hn, a),∃θdet ∈ Θdet. θmix(θdet) > 0 ∧ θdet(hn, a) = u,

gives us the desired result:
∀hn ∈ Hn,∀a ∈ A,∀u ∈ f(θmix)(hn, a).u ∈ UP(fix(hn)).

Lemma 10. f(θmix) equivalent to θmix:

∀θmix ∈ Θmix,∀π ∈ Π ∪Πmix. µπ,θmix

= µπ,f(θmix).

Proof. Take arbitrary θmix ∈ Θmix. We show ∀π ∈ Π∪Πmix,∀τ ∈ PathsM . µπ,θmix

(τ) = µπ,f(θmix)(τ) by induction on the
length of the path τ . We write the length of τ as |τ |.
Assume |τ | = 0. Then τ = ⟨sI⟩. Then we have for π ∈ Π:

µπ,θmix

(⟨sI⟩) =
∑

θdet∈Θdet

θmix(θdet) · ηπ,θ
det

(⟨sI⟩)

=
∑

θdet∈Θdet

θmix(θdet) · 1

= 1

= ηπ,f(θ
mix)(⟨sI⟩)

= µπ,f(θmix)(⟨sI⟩),

and for πmix ∈ Πmix:

µπmix,θmix

(⟨sI⟩) =
∑

πdet∈Πdet

πmix(πdet) ·
∑

θdet∈Θdet

θmix(θdet) · ηπ,θ
det

(⟨sI⟩)

=
∑

πdet∈Πdet

πmix(πdet) ·
∑

θdet∈Θdet

θmix(θdet) · 1

=
∑

πdet∈Πdet

πmix(πdet) · 1

=
∑

πdet∈Πdet

πmix(πdet) · ηπ,f(θ
mix)(⟨sI⟩)

= µπmix,f(θmix)(⟨sI⟩).

So for paths τ of length 0, we know that ∀π ∈ Π ∪Πmix. µπ,θmix

(τ) = µπ,f(θmix)(τ).
Now assume we know, given q ∈ N, q ≥ 1, that:

∀τ ∈ PathsM .|τ | = q − 1 =⇒ ∀π ∈ Π ∪Πmix. µπ,θmix

(τ) = µπ,f(θmix)(τ).

Take arbitrary τ ∈ PathsM with horizon length |τ | = q. Then we have:

τ = τ0:q−1 ⊕ ⟨aq−1, uq−1, sq⟩ = τ0:q−2 ⊕ ⟨aq−2, uq−2, sq−1, aq−1, uq−1, sq⟩.

Then τ0:q−1 ∈ PathsM and |τ0:q−1| = q − 1. By assumption, we get that:

∀π ∈ Π ∪Πmix. µπ,θmix

(τ0:q−1) = µπ,f(θmix)(τ0:q−1).

We also assume that On,M (τ0:q−1) ∈ reln(θmix). If On,M (τ0:q−1) /∈ reln(θmix), so if the history of the path’s prefix is not
relevant for the mixed policy, the path will not be generated by the mixed policy or the stochastic policies. Then we trivially
have:

∀π ∈ Π ∪Πmix. µπ,θmix

(τ) = 0 = µπ,f(θmix)(τ).

We need to distinguish two cases for the proof: π ∈ Π and π ∈ Πmix. We write out the more complicated case: π ∈ Πmix.
The other proof follows along the same lines. We indicate hard-to-read changes in the equations using either blue or red text.

µπmix,θmix

(τ) =
∑

πdet∈Πdet

πmix(πdet) ·
∑

θdet∈Θdet

θmix(θdet) · ηπdet,θdet(τ).

Unfolding ηπdet,θdet(τ):

=
∑

πdet∈Πdet

πmix(πdet) ·
∑

θdet∈Θdet

θmix(θdet) · ηπdet,θdet(τ0:q−1) · πdet(Oa,M (τ0:q−1))(aq−1) ·

θdet(On,M (τ0:q−1), aq−1)(uq−1) · T (uq−1)(sq−1, aq−1, sq).

Reordering:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) ·

∑
θdet∈Θdet

θmix(θdet) · ηπdet,θdet(τ0:q−1) · θdet(On,M (τ0:q−1), aq−1)(uq−1).

Multiplying by a term equal to 1:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) ·

∑
θdet∈Θdet

θmix(θdet) · ηπdet,θdet(τ0:q−1) · θdet(On,M (τ0:q−1), aq−1)(uq−1) ·
∑

θdet∈Θdet θ
mix(θdet) · ηπdet,θdet(τ0:q−1)∑

θdet∈Θdet θmix(θdet) · ηπdet,θdet(τ0:q−1)
.

Reordering:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) ·
∑

θdet∈Θdet

θmix(θdet) · ηπdet,θdet(τ0:q−1) ·

∑
θdet∈Θdet θ

mix(θdet) · ηπdet,θdet(τ0:q−1) · θdet(On,M (τ0:q−1), aq−1)(uq−1)∑
θdet∈Θdet θmix(θdet) · ηπdet,θdet(τ0:q−1)

.

Using the definition of µ for deterministic or stochastic agent policies and mixed nature policies:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) · µπdet,θmix

(τ0:q−1) ·

∑
θdet∈Θdet θ

mix(θdet) · ηπdet,θdet(τ0:q−1) · θdet(On,M (τ0:q−1), aq−1)(uq−1)∑
θdet∈Θdet θmix(θdet) · ηπdet,θdet(τ0:q−1)

.

Using lemma 5, we get:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) · µπdet,θmix

(τ0:q−1) ·

∑
θdet∈Θ

det,On,M (τ0:q−1) θ
mix(θdet) · ηπdet,θdet(τ0:q−1) · θdet(On,M (τ0:q−1), aq−1)(uq−1)∑

θdet∈Θ
det,On,M (τ0:q−1) θmix(θdet) · ηπdet,θdet(τ0:q−1)

.

Let θdet
′

be an arbitrary deterministic policy in the set of relevant deterministic policies Θdet,On,M (τ0:q−1). Using lemma 6, we get:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) · µπdet,θmix

(τ0:q−1) ·

∑
θdet∈Θ

det,On,M (τ0:q−1) θ
mix(θdet) · ηπdet,θdet

′
(τ0:q−1) · θdet(On,M (τ0:q−1), aq−1)(uq−1)∑

θdet∈Θ
det,On,M (τ0:q−1) θmix(θdet) · ηπdet,θdet

′
(τ0:q−1)

.

Reordering:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) · µπdet,θmix

(τ0:q−1) ·

ηπdet,θdet
′
(τ0:q−1) ·

∑
θdet∈Θ

det,On,M (τ0:q−1) θ
mix(θdet) · θdet(On,M (τ0:q−1), aq−1)(uq−1)

ηπdet,θdet
′
(τ0:q−1) ·

∑
θdet∈Θ

det,On,M (τ0:q−1) θmix(θdet)
.

Now we can simplify the fraction:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) · µπdet,θmix

(τ0:q−1) ·

∑
θdet∈Θ

det,On,M (τ0:q−1) θ
mix(θdet) · θdet(On,M (τ0:q−1), aq−1)(uq−1)∑

θdet∈Θ
det,On,M (τ0:q−1) θmix(θdet)

.

Using our assumption ∀π ∈ Π ∪Πmixµπ,θmix

(τ0:q−1) = µπ,f(θmix)(τ0:q−1), we get:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) · µπdet,f(θmix)(τ0:q−1) ·

∑
θdet∈Θ

det,On,M (τ0:q−1) θ
mix(θdet) · θdet(On,M (τ0:q−1), aq−1)(uq−1)∑

θdet∈Θ
det,On,M (τ0:q−1) θmix(θdet)

.

Using the definition of µ for deterministic or stochastic agent and nature policies:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) · ηπdet,f(θmix)(τ0:q−1) ·

∑
θdet∈Θ

det,On,M (τ0:q−1) θ
mix(θdet) · θdet(On,M (τ0:q−1), aq−1)(uq−1)∑

θdet∈Θ
det,On,M (τ0:q−1) θmix(θdet)

.

Using the definition of f and our assumption the On,M (τ0:q−1) ∈ reln(θmix), we get:

= T (uq−1)(sq−1, aq−1, sq) ·
∑

πdet∈Πdet

πmix(πdet) · πdet(Oa,M (τ0:q−1))(aq−1) · ηπdet,f(θmix)(τ0:q−1) ·

f(θmix)(On,M (τ0:q−1), aq−1)(uq−1).

Reordering:

=
∑

πdet∈Πdet

πmix(πdet) · ηπdet,f(θmix)(τ0:q−1) · πdet(Oa,M (τ0:q−1))(aq−1) · f(θmix)(On,M (τ0:q−1), aq−1)(uq−1) ·

T (uq−1)(sq−1, aq−1, sq).

Folding ηπdet,f(θmix)(τ):

=
∑

πdet∈Πdet

πmix(πdet) · ηπdet,f(θmix)(τ).

Using the definition of µ for mixed agent policies and deterministic or stochastic nature policies:

= µπmix,f(θmix)(τ).

So if ∀π ∈ Π∪Πmix. µπ,θmix

(τ) = µπ,f(θmix)(τ) holds for paths of arbitrary length q−1 ∈ N, ∀π ∈ Π∪Πmix. µπ,θmix

(τ) =

µπ,f(θmix)(τ) holds for paths of length q. Hence, by induction, ∀τ ∈ PathsM ,∀π ∈ Π ∪Πmix. µπ,θmix

(τ) = µπ,f(θmix)(τ).
As θmix ∈ Θmix was arbitrarily chosen, we conclude that:

∀θmix ∈ Θmix,∀π ∈ Π ∪Πmix. µπ,θmix

= µπ,f(θmix).

We can now prove the nature case of Theorem 6:

Theorem 6 (Existence of equivalent stochastic policy). Let µπ,θ ∈ ∆(PathsM) be the probability distribution over paths in the
RPOMDP resulting from executing agent policy π and nature policy θ. Then:

∀πmix ∈ Πmix,∃π ∈ Π,∀θ ∈ Θ ∪Θmix.µπmix,θ = µπ,θ,

∀θmix ∈ Θmix,∃θ ∈ Θ,∀π ∈ Π ∪Πmix. µπ,θmix

= µπ,θ.

Proof. Take arbitrary θmix ∈ Θmix. By Lemma 9, we know that:

f(θmix) ∈ Θ.

Furthermore, by Lemma 10, we know that:

∀π ∈ Π ∪Πmix. µπ,θmix

= µπ,f(θmix).

Hence, we know that:
∃θ ∈ Θ,∀π ∈ Π ∪Πmix. µπ,θmix

= µπ,θ.

As θmix ∈ Θmix was arbitrarily chosen, we conclude that:

∀θmix ∈ Θmix,∃θ ∈ Θ,∀π ∈ Π ∪Πmix. µπ,θmix

= µπ,θ.

G.4 Convex Semi-Infinite Game
Although we follow the occupancy game construction from [Delage et al., 2023], their proof for Nash equilibrium existence
requires both players to have convex subsets of a Euclidean space as their policy space. Our set of nature policies does not meet
this requirement, as the number of deterministic nature policies is infinite, and therefore, the mixed policy space is infinite-
dimensional. Instead, we show that our occupancy game is a convex semi-infinite game as defined in [Lopez and Vercher,
1986] and given below:
Definition 22 (Convex semi-infinite game [Lopez and Vercher, 1986]). Given an arbitrary, possibly infinite set T , a convex
semi-infinite game is a zero-sum game with policy sets Γ and C of the following types:

• Γ = {λ⃗ = (λt)t∈T | only finitely many λt ̸= 0, λt ≥ 0, and
∑

t∈T λt = 1}.
• C = a nonempty closed convex set in Rn with n ∈ N a finite number.

And a family of convex functions with finite values FT = {Ft : Rn → R | t ∈ T}, such that the value function of the convex
semi-infinite game W : C × Γ → R is:

W (x⃗, λ⃗) =
∑
t∈T

λtFt(x⃗), with λ⃗ ∈ Γ and x⃗ ∈ C.

Theorem 7 (Occupancy game is convex semi-infinite). Given an RPOMDP M and horizon K ∈ N, the corresponding occu-
pancy game OG (Definition 19) is an convex semi-infinite game, where:

• T is the set of deterministic nature policies Θdet
0:K−1.

• Γ is the set of mixed nature policies Θmix
0:K−1.

• C is the set of mixed agent policies Πmix
0:K−1.

• Fθdet(x⃗) =
∑

πdet∈Πdet
0:K−1

xπdet · V πdet,θdet

with θdet ∈ Θdet
0:K−1 = T and x⃗ ∈ Rn where n is the finite number of

deterministic agent policies |Πdet
0:K−1|.

Note that we omitted the history length indication for the policies for readability purposes. The history lengths on which the
policies are defined can be derived from the policy sets from which they are taken. See Table 2 in Appendix A for the notation
glossary.
We prove Theorem 7 by proving several smaller lemmas, showing that the suggested mapping of the occupancy game to
the convex semi-infinite game definition is correct. Lemma 11 shows that the set of mixed agent policies Πmix

0:K−1 meets the
conditions for policy set C of the convex semi-infinite game definition.
Lemma 11. Πmix

0:K−1 is a nonempty closed convex set in Rn with n = |Πdet
0:K−1| a finite number.

Proof. By definition, Πmix
0:K−1 = ∆(Πdet

0:K−1). Since the set of actions A, the set of agent observation Za
• , and the set of public

observation Z◦ are all finite and nonempty, the number of deterministic policies |Πdet
0:K−1| is finite and nonempty and less than

or equal to
K∑
t=0

(|A| · |Za
• | · |Z◦|)t · |A|.

Let n be the actual number of different deterministic policies in our RPOMDP. Then we know the set of mixed policies
Πmix

0:K−1 ⊆ Rn with n a finite number. Finally, since the set of mixed policies is the probability simplex ∆(Πdet
0:K−1) = ∆(Rn),

we know that it is a closed and convex set.

As no restrictions are given on T , we can take the infinite set of deterministic nature policies Θdet
0:K−1. Lemma 12 shows that

the mixed nature policies then meet the conditions for policy set Γ of the convex semi-infinite game definition.
Lemma 12. Θmix

0:K−1 is the set of finite probability distributions over the set of deterministic nature policies Θdet
0:K−1:

Θmix
0:K−1 = {λ⃗ = (λθdet)θdet∈Θdet

0:K−1
| only finitely many λθdet ̸= 0, λθdet ≥ 0, and

∑
θdet∈Θdet

0:K−1

λθdet = 1}.

Proof. By definition, the set of mixed nature policies Θmix
0:K−1 is the set of probability distributions over the set of deterministic

nature policies Θdet
0:K−1. As stated in Section 2, we only consider finite probability distributions over infinite sets. The set of

mixed nature policies is hence also restricted to the finite probability distributions. This means λ⃗ = θmix ∈ Θmix
0:K−1 with

λθdet = θmix(θdet).

Recall the family of functions Fθdet : Rn → R defined on the set of deterministic nature policies Θdet
0:K−1 in Theorem 7:

Fθdet(xπdet) =
∑

πdet∈Πdet
0:K−1

xπdet · V πdet,θdet

.

The next two lemmas show that this family of functions Fθdet is convex (Lemma 13) and all functions in the family have a finite
value (Lemma 14).
Lemma 13. ∀θdet ∈ Θdet

0:K−1. Fθdet is a convex function.

Proof. Take arbitrary θdet ∈ Θdet
0:K−1, x⃗, y⃗ ∈ Rn, and α ∈ [0, 1] then:

Fθdet(α · x⃗+ (1− α) · y⃗) =
∑

πdet∈Πdet

(α · x⃗+ (1− α) · y⃗)πdet · V πdet,θdet

=
∑

πdet∈Πdet

(α · xπdet + (1− α) · yπdet) · V πdet,θdet

=
∑

πdet∈Πdet

α · xπdet · V πdet,θdet

+ (1− α) · yπdet · V πdet,θdet

=
∑

πdet∈Πdet

{
α · xπdet · V πdet,θdet}

+
∑

πdet∈Πdet

{
(1− α) · yπdet · V πdet,θdet}

= α ·
∑

πdet∈Πdet

{
xπdet · V πdet,θdet}

+ (1− α) ·
∑

πdet∈Πdet

{
yπdet · V πdet,θdet}

= α · Fθdet(x⃗) + (1− α) · Fθdet(y⃗).

So ∀θdet∈Θdet . Fθdet is a convex function.

Lemma 14. Given θdet ∈ Θdet, x⃗ ∈ Rn:
Fθdet(x⃗) has a finite value.

Proof. ∀θdet ∈ Θdet,∀πdet ∈ Πdet the value of V πdet
i ,θdet

is finite, as it is bounded by K ·(maxs,a∈S×A R(s, a)). Furthermore,
x⃗ ∈ Rn can only take finite values. Together, this shows that:

∀θdet ∈ Θdet,∀πdet ∈ Πdet. Fθdet(x⃗) has a finite value.

Finally, Lemma 15 shows that the value function W : Πmix
0:K−1 ×Θmix

0:K−1 → R of the convex semi-infinite game constructed as
in Theorem 7 is equivalent to the value function V : Πmix

0:K−1 ×Θmix
0:K−1 → R of the occupancy game.

Lemma 15. The value function of the convex semi-infinite game is equivalent to the value function of the occupancy game.

∀πmix ∈ Πmix
0:K−1,∀θmix ∈ Θmix

0:K−1.W (πmix, θmix) = V πmix,θmix

.

Proof. Recall the definition of the value function of a convex semi-infinite game:

W (πmix, θmix) =
∑

θdet∈Θdet

θmix(θdet) · Fθdet(πmix).

By construction, the value function of our occupancy game is the same as that of our original RPOMDP. However, as shown in
Appendix G.3, we can reason with mixed policies, giving us the following value function:

V πmix,θmix

=
∑

πdet∈Πdet

πmix(πdet) ·
∑

θdet∈Θdet

θmix(θdet) · V πdet,θdet

.

Take arbitrary mixed agent and nature policies πmix ∈ Πmix
0:K−1, θ

mix ∈ Θmix
0:K−1. Then:

W (πmix, θmix) =
∑

θdet∈Θdet

θmix(θdet) · Fθdet(πmix)

=
∑

θdet∈Θdet

θmix(θdet) ·
∑

θdet∈Θdet

πmix(πdet) · V πdet,θdet

=
∑

πdet∈Πdet

πmix(πdet) ·
∑

θdet∈Θdet

θmix(θdet) · V πdet,θdet

= V πmix,θmix

.

Lemma 15 is the final step in proving Theorem 7. We conclude that our occupancy game is a convex semi-infinite game.
The final step in proving the existence of a finite horizon Nash equilibrium in our RPOMDPs follows from [Lopez and Vercher,
1986, Theorem 3.2], stating that in a convex semi-infinite game, if the convex functions and the convex agent policy set have
no common direction of recession, then a Nash equilibrium and an optimal strategy for the agent exist.
Lemma 16. In the convex semi-infinite game of our occupancy game, the convex functions Fθdet with θdet ∈ Θdet and the set
of mixed agent policies Πmix have no common direction of recession.

Proof. As our set of agent policies is a convex polytope in Rn, it is a closed and bounded convex subset of Rn. Then, the
recession cone consists only of the zero vector [Zalinescu, 2002]. The zero vector is also trivially contained in the recession
cones of the convex functions. Therefore, we know that the convex functions and the convex agent policy set have no common
direction of recession.

As shown in Lemma 16, our occupancy game meets the condition given in [Lopez and Vercher, 1986]. It hence follows that a
Nash equilibrium and an optimal strategy for the agent exist and that the saddle point condition holds, proving Theorem 3.

G.5 Nature First
When reasoning with the nature first semantics, the nature policy no longer relies on the last action of the agent. This influences
the proof of the sufficient statistic as follows:

OS{π,θ}0:t
(⟨ht, at, ut, z

a
• , z

n
• , z◦⟩)

def
= ⟨σ{π,θ}0:t

(⟨ht, at, ut, z
a
• , z

n
• , z◦⟩), θ0:t⟩,

where:

θ0:t
def
= ⟨θ0:t−1, θt⟩.

σ{π,θ}0:t
(⟨ht, at, ut, z

a
• , z

n
• , z◦⟩)

def
= Pr(ht, at, ut, z

a
• , z

n
• , z◦ | π0:t, θ0:t)

=
∑
s∈Sn

∑
s′∈Sn

Pr(za• , z
n
• , z◦ | s′) Pr(s′ | at, ut, s) Pr(ht, at, ut, s | π0:t, θ0:t)

=
∑
s∈Sn

∑
s′∈Sn

Pr(za• , z
n
• , z◦ | s′) Pr(s′ | at, ut, s) Pr(ut | ht, at, s, π0:t, θ0:t) Pr(ht, at, s | π0:t, θ0:t).

The chance of a nature action only depends on nature’s policy at time t and the history:

=
∑
s∈Sn

∑
s′∈Sn

Pr(za• , z
n
• , z◦ | s′) Pr(s′ | at, ut, s) Pr(ut | ht, θt) Pr(ht, at, s | π0:t, θ0:t)

=
∑
s∈Sn

∑
s′∈Sn

Pr(za• , z
n
• , z◦ | s′) Pr(s′ | at, ut, s) Pr(ut | ht, at, θt) Pr(at | ht, πt) Pr(s | ht) Pr(ht | π0:t−1, θ0:t−1)

=
∑
s∈Sn

∑
s′∈Sn

Oa(s′, za• , z◦,)On(s′, zn• , z◦)T a(T n(s, ut), at, s
′)θt(h

n
t , ut)πt(h

a
t , at)b(s, ht)σ{π,θ}0:t−1

(ht).

We can hence still compute the successor occupancy state using only the previous occupancy state OS{π,θ}0:t−1
=

⟨σ{π,θ}0:t−1
, θ0:t−1⟩ and policies πt, θt at time t. The expected reward proof requires no modifications.

We define the nature first OG as follows:
Definition 23 (OG). Given a POSG as defined in Definition 18 ⟨Sa,Sn,Aa,An, T ,R,Za,Zn,Oa,On⟩, and a hori-
zon K ∈ N, we define the OG as a tuple (Sa,Sn,Aa,An,T,R) where the sets of states and actions are defined
as follows: Sa =

⋃K−1
t=0 (

⋃
π0:t∈Π0:t

⋃
θ0:t∈Θ0:t

OS{π,θ}0:t
× Θt+1) is the infinite set of agent states, and Sn =⋃K−1

t=0

⋃
π0:t∈Π0:t

⋃
θ0:t∈Θ0:t

OS{π,θ}0:t
the infinite set of nature states; Aa =

⋃K−1
t=0 Πt is the infinite set of agent actions,

and An =
⋃K−1

t=0 Θt the infinite set of nature actions; The transition and reward functions are then defined as:

• T = Ta ∪ Tn, the transition function, where:

– Ta : Sa × Aa ↪→ Sn the agent’s transition function.
– Tn : Sn × An ↪→ Sa nature’s transition function.

• R : Sa × Aa → R the reward function.

Where:

• R(⟨σ{π,θ}0:t
, θ0:t⟩, πt+1) =

∑
s∈Sa

∑
a∈Aa

{
R(s, a) ·

∑
ht+1∈Ht+1(θ0:t)

{
πt+1(ht+1, a)b(s, ht+1)σ{π,θ}0:t

(ht+1)
}}

.

• Tn(⟨σ{π,θ}0:t
, θ0:t⟩, θt+1) = ⟨⟨σ{π,θ}0:t

, θ0:t⟩, θt+1⟩.
• Ta(⟨⟨σ{π,θ}0:t

, θ0:t⟩, θt+1⟩, πt+1) = ⟨σ{π,θ}0:t+1
, θ0:t+1⟩, where:

– θ0:t+1 = θ0:t ⊕ θt+1.
– ∀ht+1 ∈ Ht+1(θ0:t),∀a ∈ Aa,∀u ∈ An,∀za• , zn• , z◦ ∈ Za

• × Zn
• × Z◦, σ{π,θ}0:t+1

(⟨ht+1, a, u, z
a
• , z

n
• , z◦⟩) =∑

s∈Sn

∑
s′∈Sn

Oa(s′, za• , z◦,)On(s′, zn• , z◦)T a(T n(s, ut), at, s
′)θt(h

n
t , ut)πt(h

a
t , at)b(s, ht)σ{π,θ}0:t−1

(ht).

Where b(s, ht) is the belief computed by t belief updates given the joint history ht. Where Ht(θ0:t−1) ⊂ Ht is the subset
with ui ∈ U determined by θi given the history hn

0:i−1 and action a. This is a finite subset of the infinite set of possible joint
histories.
To show that for every stochastic policy there exists a mixed policy that behaves equivalently and vice versa in the nature first
setting, the proofs follow the same steps as in Appendix G.3 for the agent first policies. The only required changes are to
remove the agent action input for the nature policies and the corresponding ∀a ∈ A.
The nature first OG still meets all requirements for having an optimal value, which can be shown by following the same proof
steps as for the agent first OG in Appendix G.4.

	Introduction
	Preliminaries
	Markov Models
	Robust MDPs

	RPOMDPs and Uncertainty Assumptions
	Stickiness: Restricting Nature's Choices
	The Value of an RPOMDP

	POSG Semantics for RPOMDPs
	Correctness of the Transformation
	Existence of Nash Equilibria

	Related Work
	Classification of RPOMDP Methods
	Further Related Work

	Conclusion
	Appendix Overview & Additional Preliminaries
	Glossary of Key Notation
	Additional Preliminaries
	Nature first

	From General RPOMDP to RPOMDP With Deterministic Observations
	Stickiness Examples
	Zero and Full Stickiness
	Observation-Based Stickiness

	Uncertainty Assumptions Matter
	Stickiness Matters
	Underlying POSGs

	Observation-based stickiness
	Underlying POSGs

	Order of Play Matters
	Underlying POSGs

	a-Rectangularity
	Underlying POSGs

	Nature First Semantics
	Equivalent Values
	Mixed policies
	Nature first

	Nash Equilibrium
	Sufficient Statistic
	Occupancy Game
	Mixed policies
	Convex Semi-Infinite Game
	Nature First

