
Master thesis
Computing Science

Radboud University

The Underlying Belief Model of Uncertain Partially
Observable Markov Decision Processes

Author:
Eline Bovy
s1007567

Daily supervisor:
Marnix Suilen MSc

marnix.suilen@ru.nl

First supervisor/assessor:
dr. Nils Jansen

n.jansen@cs.ru.nl

Second assessor:
dr. Sebastian Junges

sebastian.junges@ru.nl

April 24, 2023

Abstract

Markov Decision Processes (MDPs) are the standard model for reasoning about sequential
decision-making in a probabilistic environment. Extending MDPs with partial observability
and model uncertainty allows real-world sequential decision-making problems to be modeled
more realistically. The MDP and its extensions are used to compute optimal policies, i.e., best
courses of action with respect to some predefined goals.

As both partial observability and model uncertainty add uncertainty to the model, com-
puting optimal policies becomes increasingly hard. For Partially Observable Markov Decision
Processes (POMDPs), it is common practice to define the underlying belief model: the be-
lief MDP. Many POMDP optimal policy computation algorithms use the belief MDP or the
corresponding belief update function. The underlying belief model for uncertain POMDPs
(uPOMDPs) has not yet been defined.

In this thesis, we identify the underlying belief model of uPOMDPs. As this model is
computationally untractable, we define an over-approximation of this model, which we refer
to as the belief uMDP. We define the belief uMDP similarly to how the belief MDP is defined
for POMDPs, adjusting it to work with uncertainty intervals. The added model uncertainty
causes the uncertain versions of the belief update, belief state transition, and reward functions
to give rise to optimization problems. The uncertain belief update, in particular, gives rise to
non-convex quadratic fractional programs.

To make the computation of new uncertain belief states tractable, we approximate the non-
convex quadratic fractional programs. We consider under-approximation via random sampling
and over-approximation by decoupling constraints between the numerator and denominator
functions. We discuss both full and partial decoupling of these functions.

We combine the full- and partial-decoupling over-approximation methods with the property
that the transition function is independent between states. This combination allows us to
transform part of the computation to precomputable linear programs. The resulting programs
for the full- and partial-decoupling methods are linear and linear fractional, respectively. As a
final step, we can use the Charnes-Cooper transformation to turn the fractional linear program
of the partial-decoupling method into a linear program.

We implement the random sampling under-approximation and the partial-decoupling over-
approximation method. We implement the partial-decoupling method both with and with-
out the Charnes-Cooper transformation step. We use the mathematical optimization solver
Gurobi to solve resulting linear (fractional) programs. We evaluate the implementations on
uPOMDP versions of the cheese maze, the tiger problem, and the grid-world robot POMDPs.
Additionally, we evaluate the aircraft benchmark problem.

The partial-decoupling method, in combination with the Charnes-Cooper transformation,
is the fastest in all experiments and returns the same values as the partial-decoupling method
without the Charnes-Cooper transformation. On the aircraft benchmark problem, the partial-
decoupling method with the Charnes-Cooper transformation is able to explore up to horizon
17 within one hour.

Contents

1 Introduction 4

2 Related Work 10

3 Preliminaries 12
3.1 Notation . 12
3.2 Gradient and Hessian . 12
3.3 Optimization problems . 13

3.3.1 Convexity . 14
3.3.2 Convex polytopes . 15

4 Formal models 16
4.1 Running example . 16
4.2 Markov Decision Processes . 16

4.2.1 Policies . 17
4.2.2 Example . 19

4.3 Partially Observability . 20
4.3.1 Belief . 21
4.3.2 Policies . 23
4.3.3 Example . 23

4.4 Model uncertainty . 29
4.4.1 Uncertain MDPs . 29
4.4.2 Uncertain POMDPs . 30
4.4.3 Model assumptions . 31

5 Underlying belief model for uPOMDPs 32
5.1 Uncertain belief state . 32
5.2 Definition . 33

5.2.1 Interchangeable parts . 34
5.2.2 Horizon . 34

5.3 Uncertain belief update . 34
5.3.1 Belief uncertainty intervals . 34
5.3.2 Information loss . 35
5.3.3 Belief distribution constraints . 37
5.3.4 Correctness of the uncertain belief update function 40

5.4 Uncertain belief state transitions . 43
5.4.1 Correctness of the uncertain belief state transition function 43

1

5.5 Uncertain rewards . 44
5.5.1 Correctness of the uncertain reward function 45

5.6 Correctness of the belief uMDP . 46
5.7 Example . 47
5.8 Benefits of the belief uMDP . 49

6 Solving and approximating the optimization problems 51
6.1 Overview of the feasible sets . 51

6.1.1 Optimizing over an uncertain belief state 51
6.1.2 Optimizing over the uncertain state transition function 52
6.1.3 Combining the feasible sets . 54

6.2 Overview of the optimization problems . 55
6.3 Solving linear programs . 55
6.4 Solving and approximating quadratic programs 56

6.4.1 Independent transitions . 56
6.5 Approximating quadratic fractional programs 59

6.5.1 Full decoupling . 59
6.5.2 Partial decoupling . 61

6.6 Random sampling . 69
6.7 Two-phase Succesive Linear Programming Algorithm 70
6.8 Evaluation of the approximations . 72

7 Numerical experiments 73
7.1 Implementation . 73
7.2 Problem descriptions . 74

7.2.1 Cheese maze . 74
7.2.2 Tiger problem . 76
7.2.3 Grid-world robot . 77
7.2.4 Aircraft . 78

7.3 Experiments . 79
7.4 Results . 80

7.4.1 Base versions . 80
7.4.2 The effect of increased uncertainty . 83
7.4.3 The effect of increased size . 89

8 Discussion 93

9 Conclusions 95

A Proofs of non-convexity 100
A.1 Non-convexity of quadratic uncertain transition function 100
A.2 Non-convexity of quadratic fractional belief uncertainty interval function 102
A.3 Non-convexity of quadratic fractional belief contribution function 105
A.4 Non-convexity of quadratic fractional belief normalization function 107
A.5 Non-convexity of quadratic belief uncertainty interval sub-functions 110

A.5.1 Numerator . 110
A.5.2 Denominator . 112

2

A.6 Non-convexity of quadratic belief contribution sub-functions 112
A.6.1 Numerator . 112
A.6.2 Denominator . 114

A.7 Non-convexity of quadratic belief normalization sub-functions 114
A.7.1 Numerator . 114
A.7.2 Denominator . 116

B Problem data 117
B.1 Cheese maze . 117
B.2 Tiger problem . 120
B.3 Grid-world robot . 122

3

Chapter 1

Introduction

In sequential decision making, an agent, such as a human, animal, or computer, must repeat-
edly choose between two or more possible actions. These actions can influence the state of
the world in the short or long term. The agent must try to make decisions in an optimal way
with respect to some goal it is trying to reach. Sequential decision-making problems arise in
many situations. Think, for example, of a spoken dialogue system, where a computer gets
auditory input and must choose how to react with the goal of quickly satisfying the user’s
requests, therefore maximizing the user’s happiness [Young et al., 2010]; or a mouse in a maze
that has to choose what direction to move in with the goal of reaching a piece of cheese placed
somewhere in the maze [McCallum, 1993].

A Markov decision process (MDP) provides a framework for sequential decision-making
where the outcome of an action is probabilistic [Puterman, 1994]. With this, you can model,
for example, a slippery version of the cheese maze, meaning that whenever the mouse tries to
move to another square, there is a chance it slips and stays in the same square. An MDP con-
sists of a set of states that mimic the state of the world, a set of actions, and a state transition
function. This state transition function defines for each state-action pair the probability of
reaching successor states. Additionally, the MDP can have a reward function, which assigns
a reward to each state-action pair. This corresponds to the benefits of reaching your goal or
the cost of taking risks. Once you have an MDP, you can compute the optimal policy, i.e.,
the best course of action with respect to the predefined goal, often maximizing the expected
reward. Optimal policies for MDPs can be computed via, for instance, value iteration or linear
programming [Baier and Katoen, 2008].

One underlying assumption of MDPs is full state observability for the agent. Furthermore,
defining an MDP precisely requires full knowledge of the problem. When trying to model real-
world sequential decision-making problems, state observability for the agent and full knowledge
are not always possible. For example, when the available data is imprecise or incomplete. We
give some more concrete examples below. Various extensions of MDPs have been developed
to deal with different types of lack of information.

One such extension is the partially observable MDP (POMDP) [Kaelbling et al., 1998].
POMDPs deal with a lack of information in observability for the agent: States are only
partially observable and cannot always be distinguished from one another. For example,
when the mouse is placed inside the maze, it might be able to tell that it is in a vertical
hallway but not in which one. When subject to partial observability, an agent can no longer
choose actions based on the true state of the world. However, by keeping track of the action-
observation history, the agent can summarize its knowledge about the true state of the world

4

in a probability distribution over the states, called the belief. The probability for each state
describes the chance of that state being the true state of the world. After every action and
resulting observation, the new belief can be computed with the belief update function.

Another extension is the uncertain MDP (uMDP). uMDPs deal with a lack of information
in the model: Transitions can not be described by a single probability but instead lie in an
uncertainty set [Nilim and Ghaoui, 2005, Wiesemann et al., 2013, Suilen et al., 2022]. For
example, in the cheese maze, it is difficult to give the exact probability with which the mouse
will slip. Instead, we can give an interval in which this probability lies. By fixing a probability
distribution in the uncertainty set for each state-action pair, we can instantiate a nominal
version of the model. A uMDP is essentially a, possibly infinite, set of MDPs.

The lack of information in observability and transitions can also be combined into an
uncertain partially observable MDP (uPOMDP) [Itoh and Nakamura, 2007, Osogami, 2015,
Suilen et al., 2020, Cubuktepe et al., 2021]. This is the type of model we concern ourselves
with in this thesis.

The underlying belief model

Computing an optimal policy for POMDPs is a hard problem [Madani et al., 2003]. Since
uPOMDPs are, possibly infinite, sets of POMDPs, optimal policy computation for uPOMDPs
is at least as hard as for POMDPs.

When computing policies for POMDPs, it is common practice to look at the underlying
belief model: the belief Markov decision process (belief MDP). In the belief MDP, the states
represent the belief in the state of the world [Kaelbling et al., 1998]. As there are infinitely
many probability distributions, we, in general, cannot compute an entire belief MDP. However,
we can compute the belief MDP up to a finite horizon and then use MDP policy computation
algorithms to get a finite horizon policy for the corresponding POMDP. Furthermore, various
POMDP policy computation algorithms use the belief update function, such as point-based
value iteration [Shani et al., 2013, Walraven and Spaan, 2019].

A similar underlying belief model can be defined for uPOMDPs. This model, which we
call the belief uncertain Markov decision process (belief uMDP), is the set of belief MDPs
of the POMDPs contained in the uPOMDP. Figure 1.1 depicts these relations between the
models. The blue arrows represent the underlying belief model and the red arrows represent
membership. So, if a POMDP is contained in a uPOMDP, then the underlying belief model
of that POMDP, i.e., the belief MDP, is contained in the underlying belief model of that
uPOMDP, i.e., the belief uMDP.

POMDP
uPOMDP

(set of POMDP)

belief MDP
belief uMDP

(set of belief MDP)

∈

∈

Figure 1.1: Overview of relations between the underlying belief models.

5

Although there are some belief-based approaches for computing policies on uPOMDPs [Os-
ogami, 2015, Chamie and Mostafa, 2018, Itoh and Nakamura, 2007, Ahmadi et al., 2018],
none of them defines the underlying belief model for uPOMDPs. [Osogami, 2015] mentions
the idea but quickly disregards it because of the finite horizon limitations we also have for the
belief MDP. However, defining this underlying belief model has many benefits.

Most importantly, defining the belief uMDP paves the way for lifting belief-based POMDP
approaches to the uncertain setting. It allows us to compute finite horizon policies on uP-
OMDPs using uMDP algorithms like we use MDP algorithms to compute them on POMDPs.
Furthermore, having an uncertain version of the belief update function is the first step in ad-
justing various belief-based POMDP policy computation algorithms to work with uPOMDPs.

Moreover, the belief uMDP acts as a saving point, which reduces recomputation when
multiple finite horizon policies with different objectives need to be computed on the same
uPOMDP. In existing uPOMDP policy computation algorithms, the objective is integrated
into the algorithm, so even slight adjustments to the objective require complete recomputation.

Finally, the belief uMDP provides a visual representation of the uncertainty in a model
up to a finite horizon. The states of the belief uMDP summarize the uncertain belief of the
agent, making it possible to identify which uncertain transition in the uPOMDP causes the
most uncertainty in the agent’s belief. This information can, for example, be used to make
more effective decisions regarding system improvement.

Contributions

Despite all the benefits, the belief uMDP has one crucial problem: it is computationally
untractable. Especially when the number of POMDPs in a uPOMDP is infinite, for example,
when we use interval uncertainties. As a more tractable alternative, we define an approximate
belief uMDP, which over-approximates the true belief uMDP. By over-approximating the true
belief uMDP, we ensure that the belief MDPs of all POMDPs contained in the uPOMDP
are still contained in the approximate belief uMDP. Figure 1.2 extends Figure 1.1 with the
approximate belief uMDP. Again, the blue arrows represent the underlying belief model, and
the red arrows represent membership. The cyan arrow represents subset inclusion.

6

POMDP
uPOMDP

(set of POMDP)

belief MDP
belief uMDP

(set of belief MDP)

approximate
belief uMDP

∈

∈

∈ ⊆

Figure 1.2: Overview of the relations between the underlying belief models and the approxi-
mate belief uMDP.

Note that, by over-approximating, an error is introduced into the model. Policies computed
using the approximate belief uMDP or the approximate uncertain belief update might become
overly pessimistic or optimistic. The tighter the approximation, the smaller the error.

For readability purposes, we will refer to the approximate belief uMDP as the belief uMDP
throughout the rest of the report. Furthermore, to prevent confusion, we will emphasize when
we talk about the true belief uMDP by explicitly naming it as such.

The uncertain belief state

We begin by defining the uncertain belief state. This uncertain belief state must contain
all possible true beliefs given the action-observation history. We use probability intervals to
represent the uncertain belief in each state and add additional constraints to minimize the
over-approximation of the true uncertain belief state.

The belief uMDP

Based on the set of uncertain belief states, we define the belief uMDP. We extend the belief
MDP definitions of the belief update, belief state transition, and reward functions to uncertain
versions by turning them into optimization problems over the old uncertain belief state and
the uncertain state transition function. We explain how these optimization problems ensure
that all true uncertain beliefs, belief state transitions, and rewards are contained.

Optimization problems

Our definition of the belief uMDP results in three different types of optimization problems:
linear, quadratic, and quadratic fractional programs. Where linear programs can be solved
exactly, up to a given accuracy, in polynomial time [Boyd and Vandenberghe, 2014], quadratic
and quadratic fractional programs are, in general, harder to solve [Sahni, 1974].

7

We discuss a couple of ways to approximate the quadratic programs. Additionally, we
discuss how, in case of independence between transitions of different states, we can transform
the quadratic programs into multiple linear ones. Most of these resulting linear programs can
be precomputed, as they only rely on the uncertain state transition function.

Furthermore, we discuss several ways to approximate the quadratic fractional programs.
We discuss under-approximation by sampling on the uncertainty set, applying the quadratic
fractional function, and taking the maximum or minimum. Furthermore, as over-approximation
is more desirable than under-approximation, we discuss the decoupling of the uncertainty sets
of the numerator and denominator. We consider both full decoupling and partial decoupling.
Full decoupling results in two quadratic programs, one for the numerator and one for the
denominator. Partial decoupling, on the other hand, does not change the type of problem we
need to deal with. However, if we again consider the independence between transitions of dif-
ferent states, we end up with a fractional linear program and a couple of precomputable linear
programs. As a final step, the Charnes-Cooper transformation can be applied to transform
the linear fractional program into a linear one.

8

Implementation

We implement finite horizon computation of the belief uMDP with the three most promising
approximation methods for the non-convex quadratic fractional programs: the random sam-
pling approach and the partial decoupling approach with and without the Charnes-Cooper
transformation. We use the mathematical optimization solver Gurobi to solve all linear (frac-
tional) programs.

We compare the approximation methods based on the number of explored uncertain belief
states within a given time limit and the sizes of the probability intervals of the uncertain
belief states. Furthermore, we investigate the effect of increased uncertainty and increased
model size. Most notably, with the partial decoupling approach with the Charnes-Cooper
transformation, we can explore the belief uMDP of a relatively large uPOMDP up to horizon
17 within one hour.

Chapter overview

We begin by discussing existing research on uPOMDPs in Chapter 2. Next, in Chapter 3,
we introduce the theory necessary for understanding this thesis, and in Chapter 4, we give
the formal definitions of the MDP and its relevant extensions. In Chapter 5, we define the
uncertain belief state, the belief uMDP and all related functions. In Chapter 6, we elaborate
on solving and approximating the optimization problems that follow from the definitions in
Chapter 5. In Chapter 7, we discuss our implementation of the finite horizon computation
of the belief uMDP, the numerical experiments we conducted to compare the most promising
approximation methods of Chapter 6, and the results thereof. We shortly reflect on the thesis
in Chapter 8, discussing some improvement points. Finally, we conclude the thesis in Chapter
9, summarizing our work and discussing future research directions.

9

Chapter 2

Related Work

The notion of uncertain probabilities in POMDPs is first introduced in [Itoh and Nakamura,
2007]. They define POMDPs with imprecise parameters (POMDPIPs) with two versions of
uncertainty in the transition and observation functions: the interval case and the point-set
case. They use second-order beliefs, the belief in the different possible models, to induce
hypothetical POMDPs, which in turn can be used to compute policies. As the true second-
order belief of a POMDPIP is unknown, they use multiple arbitrary possibly-correct second-
order beliefs to compute so-called quasi-optimal policies. They regard any quasi-optimal policy
as a solution to the corresponding POMDPIP.

[Osogami, 2015] focuses on finding a robust policy with respect to the expected reward,
i.e., a policy that maximizes the expected reward considering the worst-case of the uncertainty.
They define a robust version of the value function using a maximin approach and prove this
function is convex when the uncertainty set is as well. Using this convexity, they define robust
point-based value iteration on the belief space to compute robust policies.

In addition to the expected reward, [Suilen et al., 2020] focuses on robustly satisfying
temporal logic constraints. They encode the underlying optimization problem as a semi-infinite
non-convex quadratically constrained quadratic program (QCQP) [Boyd and Vandenberghe,
2014] and convexify this around an initial policy using the convex-concave procedure [Lipp
and Boyd, 2016]. Additionally, they restrict the uncertainty set to convex polytopes, which
allows them to reduce the quadratic constraints to a finite number. The finite convex QCQP
can be directly solved by convex optimization solvers, resulting in a robust memoryless policy
for the uPOMDP, i.e., a robust policy that chooses actions based only on the current state,
not taking into account execution history.

Similar to [Suilen et al., 2020], [Cubuktepe et al., 2021] uses a form of convex optimiza-
tion to compute robust policies. [Cubuktepe et al., 2021] extends policy computation to
finite-memory policies by combining the uPOMDP with the memory update of a finite state
controller, i.e., an automaton consisting of a finite set of states, an action mapping function,
and a (memory) state update function [Meuleau et al., 1999]. The underlying problem is,
again, a semi-infinite non-convex QCQP. They transform the uPOMDP into a simple uP-
OMDP, where a state can have either only action choices or only uncertain outcomes. They
use dualization to reduce the constraints to a finite number. This dualization relies on the
uPOMDP being simple. Finally, they use a sequential convex programming (SCP) method
to solve the finite non-convex problem. SCP iteratively linearizes the quadratic constraints
around previous solutions, starting with an arbitrary one, until a solution satisfies the expected
reward specification.

10

Instead of robust policies, [Ahmadi et al., 2018] concentrates on checking robust satisfaction
of safety and optimality requirements. They treat uPOMDPs as switched systems [Liberzon,
2003], where switching between different possible models takes place depending on belief.
Based on this representation, the safety and optimality requirements of a POMDP can be
verified using barrier certificates [Prajna et al., 2007].

[Chamie and Mostafa, 2018] looks at post-processing a policy to become more robust
against changes in the observation function. They keep track of a belief region, which en-
capsulates the possible error of the observation function. They formulate a linear program to
compute a robust value function given a belief region and use this to post-process the original
policy to select actions more robustly.

Like most approaches above, we look at uPOMDPs restricted to a convex uncertainty set.
A critical difference between our research and previous research is the purpose: instead of
finding an optimal robust policy or verifying specifications, we aim to define the underlying
belief model. This model can later be used to compute policies or verify specifications on a
finite horizon by applying existing methods for uMDPs. Finite horizon policy algorithms for
on uMDPs use robust versions of techniques such as dynamic programming and value iteration
[Nilim and Ghaoui, 2005, Wiesemann et al., 2013, Wolff et al., 2012]

The research done in [Chamie and Mostafa, 2018] has the most overlap with our research,
considering we also keep track of belief regions instead of induced belief points. However,
[Chamie and Mostafa, 2018] only considers uncertainty in the observation function and relies
on a previously computed policy to linearize around. We, on the other hand, consider uncer-
tainty in the transition function. Note that we can do this without loss of generality, as the
observation function can be made deterministic by expanding the state space, which moves
the observation uncertainty to the transition function [Chatterjee et al., 2016]. Furthermore,
we do not linearize around another policy.

11

Chapter 3

Preliminaries

In this chapter, we introduce our notation conventions (Section 3.1) and briefly explain the
mathematical theory needed for understanding the thesis. We discuss the first and second
derivatives of multivariate functions in Section 3.2 and optimization problems in Section 3.3.

3.1 Notation

Throughout this report, we use the following notations:

∆(S) : The set of probability distributions over S.
IR : The set of real valued intervals: {[a, b] | a, b ∈ R ∧ a ≤ b}.
IP : The set of probability intervals: {[a, b] | a, b ∈ [0, 1] ∧ a ≤ b}.
[n] : The set of the integers 1 to n: {z | z ∈ Z+ ∧ z ≤ n}.
x⃗ : Vector notation.
A : Matrix notation.
∇f : The gradient of function f .
∇2f : The Hessian of function f .

3.2 Gradient and Hessian

Given a function f : Rn → R, the derivative f ′(x⃗) is a row vector of length n. The gradient of
f is the transpose of this vector [Boyd and Vandenberghe, 2014].

∇f(x⃗) = f ′(x⃗)
T

=



∂f

∂x1
(x⃗)

...

∂f

∂xn
(x⃗)



12

The Hessian of f is the second derivative [Boyd and Vandenberghe, 2014].

∇2f(x⃗) =



∂2f

∂x21
(x⃗)

∂2f

∂x1∂x2
(x⃗) . . .

∂2f

∂x1∂xn
(x⃗)

∂2f

∂x2∂x1
(x⃗)

∂2f

∂x22
(x⃗) . . .

∂2f

∂x2∂xn
(x⃗)

...
...

. . .
...

∂2f

∂xn∂x1
(x⃗)

∂2f

∂xn∂x2
(x⃗) . . .

∂2f

∂x2n
(x⃗)


3.3 Optimization problems

Optimization problems form the core problem for computing optimal policies. An optimization
problem has the following standard form [Boyd and Vandenberghe, 2014]:

Minimize f0(x⃗)

subject to fi(x⃗) ≤ ci, i ∈ [m],

where

x⃗ =
[
x1 . . . xn

]
is the optimization variable,

f0 : Rn → R is the objective function,
fi : Rn → R, i ∈ [m] are the constraint functions,

ci, i ∈ [m] are the constraints.

The standard form minimizes the objective function. The maximum can be obtained by min-
imizing the negation.

There are many subclasses of optimization problems defined by the types of objective and
constraint functions. We summarize the most relevant terms below.

Linearly constrained An optimization problem with linear constraint functions is called
linearly constrained. We write a linear function in canonical form:

f(x⃗) = b⃗
T
x⃗

Quadratically constrained An optimization problem with quadratic constraint functions
is called quadratically constrained. We write a quadratic function in canonical form:

f(x⃗) = 1
2 x⃗

TQx⃗+ b⃗
T
x⃗

We assume the Q to be symmetric. A non-symmetric square matrix can be rewritten to
its symmetric part 1

2(Q + QT), where ∀x⃗ ∈ Rn : x⃗TQx⃗ = x⃗T 1
2(Q + QT)x⃗ [Chong and

Żak, 2013].

13

Linear program An optimization problem with a linear objective function is called a linear
program. Unless otherwise noted, a linear program is assumed to be linearly constrained.

Linear programs can be solved exactly, up to a given accuracy, in polynomial time with
methods like Dantzig’s simplex method and interior-point methods [Boyd and Vanden-
berghe, 2014].

Quadratic program An optimization problem with a quadratic objective function is called
a quadratic program. Unless otherwise noted, a quadratic program is assumed to be
linearly constrained.

The general global optimization of quadratic programs is NP-hard [Sahni, 1974].

Fractional program An optimization problem with a fraction of two functions as the objec-
tive function is called a fractional program. Unless otherwise noted, a fractional program
is assumed to be linearly constrained.

3.3.1 Convexity

A set C ⊂ Rd with d ∈ Z+ is convex if ∀x⃗, y⃗ ∈ C, the line segment connecting x⃗ and y⃗ is
contained in C.

Given a convex set C and a function f : C → R:

f is convex if ∀x⃗, y⃗ ∈ C,∀α, β ∈ R≥0, α+ β = 1: f(αx⃗+ βy⃗) ≤ αf(x⃗) + βf(y⃗)

f is concave if ∀x⃗, y⃗ ∈ C,∀α, β ∈ R≥0, α+ β = 1: f(αx⃗+ βy⃗) ≥ αf(x⃗) + βf(y⃗)

f is strictly convex if ∀x⃗, y⃗ ∈ C,∀α, β ∈ R≥0, α+ β = 1: f(αx⃗+ βy⃗) < αf(x⃗) + βf(y⃗)

f is strictly concave if ∀x⃗, y⃗ ∈ C,∀α, β ∈ R≥0, α+ β = 1: f(αx⃗+ βy⃗) > αf(x⃗) + βf(y⃗)

If f is none of the above, f is non-convex.

Convex functions have the property that every local minimum is a global minimum, and
concave functions have the property that every local maximum is a global maximum [Kochen-
derfer and Wheeler, 2019]. Additionally, the strictly convex and concave functions have at
most one global minimum and maximum, respectively.

Checking convexity

Let A be an n×n symmetric real matrix and let 0⃗ be the n-dimensional zero vector:

A is positive semi-definite iff ∀x⃗ ∈ Rn : x⃗TAx⃗ ≥ 0 which we denote as A ⪰ 0

A is negative semi-definite iff ∀x⃗ ∈ Rn : x⃗TAx⃗ ≤ 0 which we denote as A ⪯ 0

A is positive definite iff ∀x⃗ ∈ Rn \ {⃗0} : x⃗TAx⃗ > 0 which we denote as A ≻ 0

A is negative definite iff ∀x⃗ ∈ Rn \ {⃗0} : x⃗TAx⃗ < 0 which we denote as A ≺ 0

If A is none of the above, A is indefinite.

14

The convexity of a function f : C → R can be checked by looking at the definiteness of the
Hessian of f [Boyd and Vandenberghe, 2014].

f is convex iff ∀x⃗ ∈ C : ∇2f(x⃗) is positive semi-definite
f is concave iff ∀x⃗ ∈ C : ∇2f(x⃗) is negative semi-definite
f is strictly convex iff ∀x⃗ ∈ C : ∇2f(x⃗) is positive definite
f is strictly concave iff ∀x⃗ ∈ C : ∇2f(x⃗) is negative definite

The Hessian of a quadratic function f(x⃗) = 1
2 x⃗

TQx⃗ + b⃗
T
x⃗ is ∇2f(x⃗) = Q. Hence, the

convexity of a quadratic function can be determined by looking at the definiteness of the
quadratic part of the function.

3.3.2 Convex polytopes

A polyhedron is the solution set of a finite number of linear equalities and inequalities [Boyd
and Vandenberghe, 2014]. A convex polytope is a bounded polyhedron. In this thesis, we
focus on optimization problems where the optimization variable is completely bounded by
probability intervals, i.e., linear inequalities, hence forming a convex polytope.

Given optimization variable x⃗ =
[
x1 . . . xn

]
and a linear (in)equality:∑

i∈[n]

enxn ▷◁ e∗

We call

e⃗ =
[
e1 . . . en

]
the coefficient vector,

e∗ the constant,
▷◁∈ {=, <,>,≤,≥} the operator.

In this thesis, we only deal with equalities and non-strict inequalities. We can rewrite the linear
(in)equalities with the = or ≥ operators to linear inequalities with the ≤ operator as follows:∑

i∈[n]

enxn ≥ e∗ ===⇒
∑
i∈[n]

−enxn ≤ −e∗

∑
i∈[n]

enxn = e∗ ===⇒
∑
i∈[n]

−enxn ≤ −e∗ ∧
∑
i∈[n]

enxn ≤ e∗

Having transformed all linear (in)equalities to ≤-inequalities, we can write a convex polytope
in the canonical matrix form:

Ax⃗ ≤ c⃗,

where each column in A forms the coefficients of a linear inequality and the corresponding
element in c⃗ forms the constant.

15

Chapter 4

Formal models

This chapter formally discusses the Markov decision process and the three extensions that
follow from partial observability and model uncertainty. We begin by introducing the running
example used throughout this thesis in Section 4.1. Next, in Section 4.2, we formally define
the Markov decision process and discuss the related theory of policies, horizons, and value
functions. Finally, we discuss the partial observability extension in Section 4.3 and the model
uncertainty extensions in Section 4.4.

4.1 Running example

Throughout this report, we use the cheese maze example to demonstrate the theory [McCal-
lum, 1993]. This example was briefly touched upon in Chapter 1. A mouse is placed in a maze
and can move in any of the cardinal directions that are not blocked by a wall. Somewhere in
the maze lies a piece of cheese, and the mouse’s goal is to reach it.

The specific maze we look at consists of fourteen squares labeled 0 through 13. The cheese
is located at square 13. Figure 4.1 depicts the maze.

Figure 4.1: Cheese maze problem.

4.2 Markov Decision Processes

Markov decision processes (MDPs) are the standard model for sequential decision-making in
a probabilistic environment [Puterman, 1994]. As shown in Figure 4.2, based on [Kaelbling

16

et al., 1998], an MDP models the decision-making loop, where the agent observes the state
and takes an action, and the world receives an action and updates the state accordingly.

Figure 4.2: Systematic workings of an MDP agent.

Modeling a sequential decision-making problem with an MDP requires full knowledge of the
problem. Specifically, it requires full state observability for the agent, meaning the agent
always knows the true state, and full knowledge about the model, meaning the transition
probabilities are known.

Definition 1: Markov decision process

An MDP is a tuple M = (S,A, P,R), where:

• S the finite set of states.
• A the finite set of actions.
• P : S ×A → ∆(S) the (partial) state transition function.
• R : S ×A → R the optional reward function.

We use P (s, a, s′) as shorthand notation for P (s, a)(s′). Moreover, we use P (·, a) : S → ∆(S)
to denote the state transition function limited to the a-transitions, so P (·, a)(s) = P (s, a).

4.2.1 Policies

A policy, also called a scheduler or strategy, is a function mapping a sequence of states and
actions, i.e., an execution history, to a distribution over the set of actions:

σ : (SA)∗S → ∆(A)

Given execution history h ∈ (SA)∗S, we denote the probability of taking action a ∈ A in
policy σ as σ(h, a).

A policy resolves the non-deterministic choices in an MDP based on the execution history.
If a policy only depends on the last state of the sequence, i.e., of type σ : S → ∆(A), the
policy is called memoryless. If a policy maps the execution history, or state, to a single action
instead of a distribution over the actions, i.e., of type σ : (SA)∗S → A, the policy is called
deterministic. A policy induces a Markov chain.

17

Definition 2: Induced Markov chain

Given an MDP M = (S,A, P,R) and a policy σ, the induced Markov chain is a tuple
Mσ = (Sσ, P σ), where:

• Sσ ⊆ (SA)∗S the set of states.
• P σ : Sσ → ∆(Sσ) the state transition function.

Given state h = (s0 a0 . . . sn−1 an−1 sn) ∈ Sσ and action an ∈ A, the transition probability
is computed as:

P σ(h, h an sn+1) = σ(h, an) · P (sn, an, sn+1)

In an induced Markov chain, all transitions are probabilistic. You can compute the probability
of different executions of the Markov chain, also called paths, by multiplying the transition
probabilities [Baier and Katoen, 2008]. These path probabilities can, in turn, be used to
compute more meaningful probabilities, such as the probability of reaching a desirable state
or not reaching an undesirable state.

Policies can be computed for various objectives, such as satisfying probabilistic computation
tree logic (PCTL) formulae [Baier and Katoen, 2008] or, in case a reward function is given,
maximizing the expected reward. In this thesis, we focus on policies for maximizing the
expected reward.

Horizons

When computing optimal policies with respect to the expected reward, there are three types
of frameworks: finite, indefinite, and infinite horizons [Kaelbling et al., 1998]. Let rt be the
reward the agent receives at t steps from the initial state. In a finite horizon framework, the
agent must maximize the expected reward of the next k states:

E

[
k−1∑
t=0

rt

]

The indefinite horizon framework is similar, except that the number k of next states to max-
imize over is unknown:

E

[
k−1∑
t=0

rt

]
Alternatively, in the infinite horizon framework, the agent must maximize the expected reward
over an infinite lifetime, taking into account a discounting factor 0 < γ < 1 to give more weight
to early rewards:

E

[∞∑
t=0

γtrt

]
The value of the discounting factor determines the degree to which future expected reward is
taken into account. The closer to 1 the discounting factor is, the more effect future expected
rewards have on the agent’s decisions. Furthermore, the discounting factor is required to
ensure convergence of the expected reward. We can also add a discounting factor to the finite
and indefinite horizon frameworks, where setting it to 1 will result in the original definition.

18

Value function

Given an MDP M = (S,A, P,R), a memoryless deterministic policy σ, and a discounting
factor 0 < γ < 1, the value function computes the expected reward of executing σ. The value
function can be used to evaluate policies [Kaelbling et al., 1998]. Let Vσ,t(s) be the expected
reward from starting in state s and executing policy σ for t steps:

Vσ,1(s) = R(s, σ(s))

Vσ,t(s) = R(s, σ(s)) + γ ·
∑
s′∈S

P (s, σ(s), s′) · Vσ,t−1(s
′)

For the infinite horizon case, we can drop the steps parameter from the above definition:

Vσ(s) = R(s, σ(s)) + γ ·
∑
s′∈S

P (s, σ(s), s′) · Vσ(s
′)

4.2.2 Example

We can model the cheese maze problem as an MDP. The set of states consists of the fourteen
squares of the maze. The set of actions consists of the four cardinal directions plus an extra
action for when the mouse has found the cheese by reaching square 13. This can be, for
example, a do-nothing action or a reset action.

The state transition function defines for each state-action pair the probability distribution
of reaching the other states. We assume the maze is slippery: for each action, the mouse has
an 85% chance to reach the intended square and a 15% chance to stay where it is. Figure 4.3
illustrates the cheese maze MDP as described above.

19

Figure 4.3: Cheese maze MDP.

We did not define any probabilities for taking an action towards a wall. If we want to define
a total state transition function, we can add self-loop transitions with probability 1.

4.3 Partially Observability

The assumption that an agent has full state observability is often unrealistic when looking
at real-world sequential decision-making problems. For example, in the maze problem, the
mouse might be able to tell that it is in a vertical hall but not in which one. The mouse must,
therefore, choose actions based on its action-observation history instead of its true position.
Figure 4.4 illustrates the maze problem where undistinguishable squares have the same color.

20

Figure 4.4: Cheese maze problem with partial observability.

The Partially observable Markov decision processes (POMDP) adds a set of observations and
an observation function to the MDP definition, allowing sequential decision-making problems
without full state observability to be modeled.

Definition 3: Partially observable Markov decision process

A POMDP is a tuple M = (S,A, P,R,Z,O), where:

• S the finite set of states.
• A the finite set of actions.
• P : S ×A → ∆(S) the (partial) state transition function.
• R : S ×A → R the optional reward function.
• Z the finite set of observations.
• O : S → ∆(Z) the observation function.

The observation function can be simplified to a state-based deterministic function O : S → Z
by expanding the state space [Chatterjee et al., 2016]. Therefore, this thesis will only focus
on this simpler observation function. We denote the boolean value of observing observation
o ∈ Z in state s ∈ S or not as O(s, o).

4.3.1 Belief

As an alternative for knowing the true state, the agent can keep track of a belief state, which
summarizes the agent’s previous actions and observations in a probability distribution over
the set of states [Kaelbling et al., 1998]. The probabilities in a belief state indicate the degree
to which the agent believes it is in the different states. As belief states are based on the action-
observation history of the agent, each belief state is linked to a single observation. The set of
belief states B is a subset of all probability distributions over the set of states ∆(S). Given a
belief state b ∈ B, we use the function b : S → [0, 1] to indicate the belief in the different states.

Figure 4.5, based on [Kaelbling et al., 1998], illustrates the idea of belief: the agent internally
consists of a state estimator (SE), which produces a belief state, and a policy, which chooses
the action based on this belief.

21

Figure 4.5: Systematic workings of a POMDP agent.

Starting with an initial belief, the state estimator needs to update the belief state after every
action and resulting observation. The resulting belief state is given by the function SE : B ×
A× Z → B and is computed using the belief update function.

Definition 4: Belief update function

Given a POMDP M = (S,A, P,R,Z,O), a belief state b, an action a ∈ A, and an observa-
tion o ∈ Z, the new belief state b′ is computed by ∀s′ ∈ S:

b′(s′) = Pr(s′ | a, o, b)

=
Pr(o | s′, a, b) · Pr(s′ | a, b)

Pr(o | a, b)

=
Pr(o | s′, a) ·

∑
s∈S Pr(s′ | a, b, s) · Pr(s′ | a, b)

Pr(o | a, b)

=
O(s′, o) ·

∑
s∈S P (s, a, s′) · b(s)

Pr(o | a, b)

Where Pr(o | a, b) is the normalization constant:
∑

s′∈S O(s′, o) ·
∑

s∈S P (s, a, s′) · b(s).
Hence, we can write the belief update function explicitly as:

b′(s′) =
O(s′, o) ·

∑
s∈S P (s, a, s′) · b(s)∑

s′∈S O(s′, o) ·
∑

s∈S P (s, a, s′) · b(s)

As belief states summarize the agent’s action-observation history, they can be used to compute
policies on POMDPs. For this purpose, we define the underlying belief model of the POMDP:
the belief MDP.

Definition 5: Belief Markov decision process

Given a POMDP M = (S,A, P,R,Z,O), the associated belief MDP is a tuple
M = (B, A,P,R), where:

• B ⊆ ∆(S) the set of belief states.
• A the finite set of actions.
• P : B ×A → ∆(B) the (partial) belief state transition function.
• R : B ×A → R the optional reward function.

22

Given belief states b, b′ ∈ B and action a ∈ A, the transition probability is computed as:

P(b, a, b′) = Pr(b′ | a, b)

=
∑
o∈Z

Pr(b′ | a, b, o) · Pr(o | a, b)

Where Pr(o | a, b) is again the normalization constant and Pr(b′ | a, b, o) indicates whether
belief state b′ is the successor of belief state b given action a and observation o:

Pr(b′ | a, b, o) =

1 if SE(b, a, o) = b′

0 otherwise

Given belief state b ∈ B and action a ∈ A, the reward is computed as:

R(b, a) =
∑
s∈S

b(s) ·R(s, a)

Horizons

Each belief state has at most |A| outgoing transitions, and each outgoing transition can,
because each belief state represents a single observation, go to at most |Z| new belief states.
Therefore, each belief state can produce at most |A| × |Z| new belief states. Since we defined
the set of actions A and the set of observations Z as finite sets, looking at a finite horizon will
also result in a finite belief MDP.

4.3.2 Policies

Policies for POMDPs cannot rely on the true state of the model. One type of policy available
is the observation-based policy, where an observation sequence or action-observation sequence
is mapped to a distribution over the set of actions:

σ : (ZA)∗Z → ∆(A)

An important requirement for observation-based policies is that executions with the same
observation sequence are mapped to the same action.

Another type of policy for POMDPs is the belief-based policy, where a belief state is mapped
to a distribution over the set of actions. Finite horizon belief-based policies can be computed
using the belief MDP.

σ : B → ∆(A)

Similar to the state-based policies for MDPs, observation-based and belief-based policies in-
duce a Markov chain.

4.3.3 Example

As already mentioned in the introduction of this section, it is not obvious that when placing
the mouse in the cheese maze, it immediately knows in which square it is. It is reasonable

23

to assume that the mouse has some sense of direction and can therefore deduct that it is, for
example, in a vertical hallway, but there are no visual cues in the maze to distinguish the
squares beyond that.

We extend the cheese maze MDP of Section 4.2.2 to a POMDP by adding an observation
set and observation function. The observation set consists of the different wall configurations
plus an observation for the goal square containing the cheese. Indicating a wall configuration
by the letters of the positions of the walls it has and the cheese square by a ‘C’ gives us the
following observation set:

{NW, NS, N, NE, EW, ESW, C}

We assume the observation function O is deterministic and get the following mapping:

O(s) =



NW if s = s0

NS if s ∈ {s1, s3}

N if s = s2

NE if s = s4

EW if s ∈ {s5, s6, s7, s8, s9, s10}

ESW if s ∈ {s11, s12}

C if s = s13

Figure 4.6 illustrates the cheese maze POMDP described above, where states with the same
observation have the same color.

24

Figure 4.6: Cheese maze POMDP.

We can now compute the belief MDP of the cheese maze POMDP. We take the initial belief
that there is an 80% chance that the mouse is in square 8 and a 10% chance that it is in square
9 or 10. The belief MDP results in an infinite amount of belief states. For example purposes,
we shall only expand two steps from the initial belief. Figure 4.7 illustrates the partial belief
MDP.

25

Figure 4.7: Cheese maze belief MDP.

The colors only indicate the observations the belief states correspond to: the belief states are
fully observable and hence distinguishable for the agent. The belief states correspond to the
following probability distributions, rounded to three decimals. We omit the states that are
mapped to 0.

b0: {s8 7→ 0.8, s9 7→ 0.1, s10 7→ 0.1}
b1: {s5 7→ 0.68, s6 7→ 0.085, s7 7→ 0.085, s8 7→ 0.12, s9 7→ 0.015, s10 7→ 0.015}
b2: {s11 7→ 0.889, s12 7→ 0.111}
b3: {s13 7→ 1}
b4: {s5 7→ 0.735, s6 7→ 0.092, s7 7→ 0.092, s8 7→ 0.065, s9 7→ 0.008, s10 7→ 0.008}
b5: {s0 7→ 1}
b6: {s2 7→ 1}
b7: {s4 7→ 1}
b8: {s5 7→ 0.117, s6 7→ 0.015, s7 7→ 0.015, s8 7→ 0.683, s9 7→ 0.085, s10 7→ 0.085}
b9: {s8 7→ 0.889, s9 7→ 0.111}

We demonstrate how to compute belief state b2 and the transition P(b0, South, b2).

Belief state b2 describes the belief after the agent takes action South and observes observation
ESW starting in belief state b0. Plugging this information into the belief update function
gives us the following formula:

26

∀s′ ∈ S:

b2(s′) =
O(s′,ESW) ·

∑
s∈S P (s, South, s′) · b0(s)∑

s′∈S O(s′,ESW) ·
∑

s∈S P (s, South, s′) · b0(s)

Since the observation function O is deterministic and O(s,ESW) = 1 iff state s ∈ {s11, s12},
we can make the following split:

∀s′ ∈ S \ {s11, s12}:

b2(s′) = 0

∀s′ ∈ {s11, s12}:

b2(s′) =

∑
s∈S P (s, South, s′) · b0(s)∑

s′∈{s11,s12}
∑

s∈S P (s, South, s′) · b0(s)

Furthermore, we only need to look at the transitions starting in a state with a non-zero belief
in belief state b0, which are states s8, s9, and s10.

∀s′ ∈ {s11, s12}:

b2(s′) =

∑
s∈{s8,s9,s10} P (s, South, s′) · b0(s)∑

s′∈{s11,s12}
∑

s∈{s8,s9,s10} P (s, South, s′) · b0(s)

=

∑
s∈{s8,s9,s10} P (s, South, s′) · b0(s)

0.85 · 0.8 + 0 · 0.1 + 0 · 0.1 + 0 · 0.8 + 0.85 · 0.1 + 0 · 0.1

=

∑
s∈{s8,s9,s10} P (s, South, s′) · b0(s)

0.85 · 0.9

=

∑
s∈{s8,s9,s10} P (s, South, s′) · b0(s)

0.765

27

0.765 = Pr(ESW | South, b0) is the normalization constant, which we also need for the
computation of the transition between belief states b0 and b2.

b2(s11) =

∑
s∈{s8,s9,s10} P (s, South, s11) · b0(s)

0.765

=
0.85 · 0.8 + 0 · 0.1 + 0 · 0.1

0.765

=
0.85 · 0.8
0.765

=
0.68

0.765
≈ 0.889

b2(s12) =

∑
s∈{s8,s9,s10} P (s, South, s12) · b0(s)

0.765

=
0 · 0.8 + 0.85 · 0.1 + 0 · 0.1

0.765

=
0.85 · 0.1
0.765

=
0.085

0.765
≈ 0.111

We hence end up with the belief state b2:

b2: {s11 7→ 0.889, s12 7→ 0.111}

Next, we compute the transition P(b0, South, b2). We defined b2 as the belief state that
describes the belief after the agent takes action South and observes observation ESW starting
in belief state b0, so SE(b0, South, o) = b2 iff observation o = ESW. Therefore we get that:

Pr(b2 | South, b0, o)

1 if o = ESW

0 otherwise

We can use this to simplify the transition computation:

P(b0, South, b2) =
∑
o∈Z

Pr(b2 | South, b0, o) · Pr(o | South, b0)

= Pr(b2 | South, b0,ESW) · Pr(ESW | South, b0)
= Pr(ESW | South, b0)

We end up with the normalization constant, which we already computed for the belief state.

P(b0, South, b2) = 0.765

28

4.4 Model uncertainty

Another way of making MDPs more applicable to real-world sequential decision-making prob-
lems is to relax the full model knowledge requirement. It is often difficult or impossible to
precisely estimate the probabilities of the transitions in the MDP models. Consider, for exam-
ple, incomplete, insufficient, or noisy data or probabilities prone to changes in external factors
such as temperature. Model uncertainty extends the MDP to the uncertain MDP (uMDP)
and the POMDP to the uncertain POMDP (uPOMDP).

Uncertain models use uncertainty sets instead of exact probabilities. It is common to
assume the uncertainty set is convex. Throughout this thesis, we will focus on interval un-
certainty sets, as this is a straightforward approach which is also the focus in most other
uPOMDP research [Cubuktepe et al., 2021, Suilen et al., 2020, Itoh and Nakamura, 2007, Ah-
madi et al., 2018] and is a subfield in uMDP research [Wu and Koutsoukos, 2008, Givan et al.,
2000]. An element from the uncertainty set, an instantiation, induces a nominal version of the
model.

4.4.1 Uncertain MDPs

Definition 6: Uncertain Markov decision process

A uMDP is a tuple M = (S,A,P , R), where:

• S the finite set of states.
• A the finite set of actions.
• P : S ×A → (S → IP) the (partial) uncertain state transition function.
• R : S ×A → R the optional reward function.

We use P (s, a, s′) as shorthand notation for P (s, a)(s′). Moreover, we use P (·, a) : S →
(S → IP) to denote the uncertain state transition function limited to the a-transitions, so
P (·, a)(s) = P (s, a).

Example

We can extend the cheese maze MDP of Section 4.2.2 to a uMDP by adding an uncertainty
set. We now assume the mouse’s chance of reaching its intended square lies between 85% and
95%. Furthermore, we assume the mouse’s chance of slipping and staying in the same square
lies between 5% and 15%. Note that these intervals do not have to match up; they only need
to allow valid instantiations. Figure 4.8 illustrates the cheese maze uMDP.

29

Figure 4.8: Cheese maze uMDP.

4.4.2 Uncertain POMDPs

Definition 7: Uncertain partially observable Markov decision process

A uPOMDP is a tuple M = (S,A,P , R, Z,O), where:

• S the finite set of states.
• A the finite set of actions.
• P : S ×A → (S → IP) the (partial) uncertain state transition function.
• R : S ×A → R the optional reward function.
• Z the finite set of observations.
• O : S × Z → IP the uncertain observation function.

Like with standard POMDPs, the observation function can be simplified to a state-based
deterministic function O : S → Z by expanding the state space [Chatterjee et al., 2016]. The
upper and lower bounds of the transitions to the new states are computed by multiplying
the upper bounds, respectively lower bounds, of the original transition and the observation
intervals.

Example

We can extend the cheese maze MDP of Section 4.2.2 to a uPOMDP by adding an uncertainty
set, observation set, and observation function. We use the same uncertainty set and uncertain
state transition function as in Section 4.4.1 and the same observation set and observation
function as in Section 4.3.3. Figure 4.9 illustrates the cheese maze uPOMDP.

30

Figure 4.9: Cheese maze uPOMDP.

4.4.3 Model assumptions

We make three assumptions about the uncertain models. First, we assume graph preservation,
which states that all lower bounds are strictly greater than 0. In other words, instantiations
cannot eliminate transitions [Suilen et al., 2020, Winkler et al., 2019].

Furthermore, we assume (s,a)-rectangularity, which states that the transition function is
independent for each state-action pair [Iyengar, 2005, Wiesemann et al., 2013].

P = ×
s∈S,a∈A

P (s, a)

Our final assumption is that the models are dynamic, which means that whenever a state
action pair is revisited, a different probability can be chosen from the uncertainty set [Iyengar,
2005].

31

Chapter 5

Underlying belief model for
uPOMDPs

In this chapter, we discuss our new framework for approximating the underlying belief model
of the uPOMDP: the belief uncertain Markov decision process (belief uMDP). We introduce
the uncertain belief state in Section 5.1, followed by the formal definition of the belief uMDP
in Section 5.2. In Sections 5.3 to 5.5, we discuss the uncertain versions of the belief update,
belief state transition, and reward functions that follow from this definition. In Section 5.6,
we show the correctness of our definition. We illustrate the belief uMDP framework on the
running example in Section 5.7. Finally, we discuss the benefits of the belief uMDP framework
in Section 5.8.

Note that, as explained in the Introduction, we refer to our approximative definition of the
underlying belief model as the belief uMDP and the true underlying belief model as the true
belief uMDP.

5.1 Uncertain belief state

To define the underlying belief model of the uPOMDP, we need to define the notion of an
uncertain belief state. Since the uncertain belief state must represent the belief of each belief
MDP in the true belief uMDP, a single probability distribution no longer suffices to capture the
action-observation history of the agent: Even if we start with a single probability distribution
as belief when taking a transition and receiving an observation, we do not know with how
much chance we ended up in state s or in state s′. We hence cannot form a new probability
distribution over the states to represent the agent’s new belief.

We do, however, know the intervals in which the chances to transition to each state lie.
Each probability distribution contained in the uncertainty intervals of the uncertain state
transition function, i.e., each instantiation P ∈ P , gives rise to a new belief probability dis-
tribution. To represent the action-observation history of the agent, the new uncertain belief
state must contain all true possible belief probability distributions the agent can have given
the uncertainty in the state transition function and the initial belief.

We define the uncertain belief state B as a convex polytope over |S| variables, representing
the belief in each state of the uPOMDP. The convex polytope consists of at least 2|S| + 2

32

linear inequalities, which we can divide into three sets Bui, Bpd, and Bdc. The subscripts ui,
pd, and cd stand for uncertainty interval, probability distribution, and distribution constraint.

The first set, Bui, always contains 2|S| inequalities that each restrict a single variable. Let
y⃗ be the |S|-sized variable vector over which the uncertain belief states are defined, where yi
represents the belief in state i. For each i ∈ S, Bui contains the following two inequalities:

−yi ≤ −ai,

yi ≤ bi,

where parameters ai and bi are the upper and lower bounds of the belief uncertainty interval
of i. This belief uncertainty interval contains all probabilities the belief in state i could be
given the action-observation history and initial belief. For simplicity, we can represent Bui as
a set of |S| probability intervals: Bui ∈ I|S|P . We use the function Bui : S → IP to indicate the
belief uncertainty intervals of the different states of the uPOMDP.

The second set, Bpd, always consists of two inequalities that ensure that the belief vectors
contained in the convex polytope are valid probability distributions:∑

i∈S
−yi ≤ −1,∑

i∈S
yi ≤ 1.

The final set, Bdc, is a placeholder for any additional constraints on the distribution of the
belief over the states of the uPOMDP. The necessity and content of this set will be explained
in Sections 5.3.2 and 5.3.3, respectively.

We denote the set of all uncertain belief states as B. We associate to each uncertain belief
state B ∈ B a tuple (Bui,Bpd,Bdc) containing the three sets of linear inequalities as defined
in the paragraphs above. Furthermore, we write b ∈ B to denote that belief b ∈ ∆(S) is
an instantiation of uncertain belief state B, meaning b is a solution of the system of linear
inequalities formed by Bui, Bpd, and Bdc.

5.2 Definition

Definition 8: Belief uncertain Markov decision process

Given uPOMDP M = (S,A,P , R, Z,O), we define the belief uMDP as a tuple M =
(B, A,P ,R), where:

• B the set of uncertain belief states.
• A the set of actions.
• P : B ×A → (B → IP) the (partial) uncertain belief state transition function.
• R : B ×A → IR the optional uncertain reward function.

We use P(B, a,B′) as shorthand notation for P(B, a)(B′). A new uncertain belief state is
computed given an old uncertain belief state, an action, and an observation, using the so-called
uncertain belief update function. We discuss the uncertain belief update in Section 5.3.

33

5.2.1 Interchangeable parts

The computation methods of the uncertain belief update, belief state transition, and reward
functions are interchangeable: it does not influence the structure of the belief uMDP, only
the values. Where exact computation of the uncertainty intervals is impossible, the computed
intervals should over-approximate the true probability intervals to ensure the belief uMDP
over-approximates the true belief uMDP.

Corollary 5.2.1:

{f(x) | x ∈ [lb, ub]} ⊆ {f(x) | x ∈ [lb − d, ub + e]}

The true uncertainty interval should hence always be a subinterval of the computed interval.

5.2.2 Horizon

Just like the standard belief states of the belief MDP, the uncertain belief states of the belief
uMDP can produce at most |A| × |Z| new uncertain belief states. Since we defined the set
of actions A and the set of observations Z as finite sets, looking at a finite horizon will also
result in a finite belief uMDP.

5.3 Uncertain belief update

Given a uPOMDP M = (S,A,P , R, Z,O), an old uncertain belief state B ∈ B, and an action
a ∈ A, we compute a successor uncertain belief state B′ ∈ B for each possible observation
o ∈ Z. We do this via the uncertain belief update, which consists of two steps: computing B′

ui

and computing B′
dc. Note that we do not need to compute B′

pd, as the probability distribution
constraints remain the same for all uncertain belief states: B′

pd = Bpd.

As explained in Section 5.1, an uncertain belief state needs to contain all true possible beliefs
given the action-observation history and the initial uncertain belief. To ensure that the suc-
cessor uncertain belief state B′ still satisfies this, we need to take into account all the possible
instantiated beliefs b of the old uncertain belief state B, and all instantiated state transition
functions P of the uncertain state transition function P .

5.3.1 Belief uncertainty intervals

Given an instantiated belief b ∈ B and state transition function P ∈ P , we can use the belief
update of standard POMDPs to compute a new possible belief b′. ∀s′ ∈ S:

b′(s′) =
O(s′, o)

∑
s∈S P (s, a, s′)b(s)

Pr(o | a, b)

=
O(s′, o)

∑
s∈S P (s, a, s′)b(s)∑

s′∈S O(s′, o)
∑

s∈S P (s, a, s′)b(s)

To capture all new possible beliefs b′, we can maximize and minimize this belief update function
over the instantiations of the old uncertain belief state B and uncertain state transition
function P . Let B′ be the successor uncertain belief state after taking action a ∈ A from

34

old uncertain belief state B and observing observation o ∈ Z. Given state s′ ∈ S, we get the
following optimization problem to compute B′

ui(s
′):

Let n = |S|. We use the optimization variable:

x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

]
This optimization variable consists of n2 elements representing the transitions between the
states and n elements representing the belief in each state. We distinguish the subvectors that
group the transition variables per source state:

x⃗i =
[
xi,1 . . . xi,n

]
, i ∈ [n]

And the subvector that groups the belief variables:

y⃗ =
[
y1 . . . yn

]
Then we need to minimize/maximize:

O(s′, o)
∑

s∈S xs,s′ys∑
s′∈S O(s′, o)

∑
s∈S xs,s′ys

Subject to:

x⃗i ∈ P (i, a), i ∈ [n]

y⃗ ∈ B

The objective function of this optimization problem is non-convex and requires some form
of approximation. We elaborate on this in Chapter 6. Approximating this problem gives us
upper and lower bounds for the belief uncertainty interval of one state s′ in the new uncertain
belief state B′. To compute the whole new linear inequality set B′

ui, this problem must be
solved for each state s ∈ S with O(s) = o, since states with a different observation will always
get a zero interval.

5.3.2 Information loss

Having computed the belief uncertainty intervals B′
ui, we now know the intervals containing at

least all possible probabilities the true belief could be in uncertain belief state B′. This sounds
like we have reached our goal: the uncertain belief state contains all true possible beliefs given
the action-observation history and the initial uncertain belief. However, by only considering
the new belief uncertainty intervals B′

ui, we overapproximate the set of true possible beliefs
more than necessary: The old belief uncertainty intervals Bui contain information about the
distribution of the belief which is not represented in the new uncertainty intervals1.

1Thanks to Merlijn Krale for pointing this out to me.

35

We illustrate the information loss using the partial uPOMDP in Figure 5.1. We only
consider the first six states; the rest of the uPOMDP is not required. The six states all have
the same observation, indicated by the shape of the state, and there is only a single possible
action from this observation, namely α.

A

B

A1

A2

B1

B2

. . .

. . .

. . .

. . .

α
[0.1, 0.9]

[0.1, 0.9]

α
[0.1, 0.9]

[0.1, 0.9]

α

α

α

α

Figure 5.1: uPOMDP information loss example.

Let Binit ∈ B be the initial uncertain belief state. For simplicity, we assume the initial un-
certain belief is known and evenly divided over states A and B. There are no additional
constraints yet: Binit

dc = ∅. We compute the successor uncertain belief state Bsuc ∈ B using
the belief update function as defined up to this point. The belief uncertainty intervals will
then change as follows:

Binit
ui = {A 7→ [0.5, 0.5],

B 7→ [0.5, 0.5],
A1 7→ [0, 0],
A2 7→ [0, 0],
B1 7→ [0, 0],
B2 7→ [0, 0]}

===⇒

Bsuc
ui = {A 7→ [0, 0],

B 7→ [0, 0],
A1 7→ [0.05, 0.45],
A2 7→ [0.05, 0.45],
B1 7→ [0.05, 0.45],
B2 7→ [0.05, 0.45]}

As mentioned before, the probability distribution set does not change: Bsuc
pd = Binit

pd . Further-
more, as we have not defined the computation yet, the additional distribution constraint set
remains empty: Bsuc

dc = ∅.

If we now look at the probability distributions contained in the belief uncertainty intervals
Bsuc

ui , we find, among others, the following belief b ∈ Bsuc
ui :

b = {A 7→ 0,
B 7→ 0,
A1 7→ 0.45,
A2 7→ 0.45,
B1 7→ 0.05,
B2 7→ 0.05}

36

The problem with belief b is that 90% of the belief ended up in the successor states of states
A, while state A originally only contained 50% of the belief. This is hence a belief that is
contained in the successor belief state Bsuc, while we know it is not a true possible belief.

Every time we ignore the belief distribution of the old uncertain belief state during the
computation of a successor belief state, we lose information and end up with unnecessary
uncertainty. To limit this information loss and, hence, restrict the distribution of the belief
over the states, we add linear inequalities to the Bdc set of an uncertain belief state B.

5.3.3 Belief distribution constraints

There are two difficulties with defining the additional distribution constraints Bdc: states with
multiple possible belief sources and normalization of the belief. We first look at the simplest
case as illustrated in Figure 5.1, where there are no states with multiple incoming transitions,
and all states have the same observation. This means we do not yet need to take into account
multiple sources of belief or normalization.

Given an uncertain belief state B ∈ B, action a ∈ A and observation o ∈ Z, let B′ be the
successor uncertain belief state after taking action a and receiving observation o, computed
with the uncertain belief update as defined up to this point. Let y⃗ be the variable over which
the uncertain belief states are defined.

We define the set of observable successors of a state s ∈ S given action a and observation o:

OS(s, a, o) = {s′ ∈ S | P (s, a, s′) ̸= [0, 0] ∧O(s′) = o}.

These observable successors are exactly those states to which the belief in state s could go
and are, therefore, also the states that we need to constrain by the amount of uncertain belief
in s. Given Bui(s) = [vs, ws], we compute two linear inequalities for each state s ∈ S:∑

s′∈OS(s,a,o)

−ys′ ≤ −vs,∑
s′∈OS(s,a,o)

ys′ ≤ ws.

Note that we can limit the computation of linear inequalities to those states with a non-
zero belief in old uncertain belief state B. The number of linear inequalities in set B′

dc is
at most 2|S| but will, in practice, often be lower. We write all linear inequalities in B′

dc as
≤-inequalities.

Multiple belief sources

Now that we have the base version of the constraints, we can extend them to work for uP-
OMDPs with states with multiple belief sources. We define a belief source as follows:

Definition 9: Belief source

Given a state s′ ∈ S, its belief sources are those states s ∈ S of which s′ could receive belief,
i.e., the states with an uncertain transition to state s′:

{s ∈ S | P (s, a, s′) ̸= [0, 0]}

37

Figure 5.2 illustrates a uPOMDP with states with multiple belief sources: State AB is a
successor state of both state A and state B and can therefore receive belief from both. Note
that all states still have the same observation, so we do not yet have to take normalization
into account.

A

B

A1

AB

B1

. . .

. . .

. . .

α
[0.1, 0.9]

[0.1, 0.9]

α
[0.1, 0.9]

[0.1, 0.9]

α

α

α

Figure 5.2: uPOMDP information loss example multiple belief source.

If we now try to use the simple distribution constraints defined in the previous subsection,
we constrain the total uncertain belief of state AB by the bounds of a state that only causes
part of that uncertain belief. One way to circumvent this is to combine the belief distribution
constraints of all states that share an observable successor. The problem with that approach
is that the constraints become a lot less strict. Thus, we instead compute the intervals of each
state’s belief contribution to the new uncertain belief of its observable successors.

Given an instantiated belief b ∈ B and state transition function P ∈ P , we can compute the
belief contribution of state s to the belief in state s′ in successor belief b′ ∈ B′ as follows:

O(s′, o)P (s, a, s′)b(s)

O(s′, o)
∑

s∈S P (s, a, s′)b(s)

To capture the bounds of the belief contribution of s′ to the uncertain belief of state s′, we can
maximize and minimize this function over the instantiations of the old uncertain belief state B
and uncertain state transition function P . Using the same optimization variable and subvec-
tors as in Section 5.3.1, and given states s, s′ ∈ S, we get the following optimization problem:

Minimize/maximize:

O(s′, o)xs,s′ys
O(s′, o)

∑
s∈S xs,s′ys

Subject to:

x⃗i ∈ P (i, a), i ∈ [n]

y⃗ ∈ B

The objective function of this optimization problem is non-convex and requires some form
of approximation. We elaborate on this in Chapter 6. Note that if state s is the only belief
source for state s′, the numerator and denominator become the same, resulting in the required
total contribution.

38

Let r̂s,s′ and r̂s,s′ be the results of minimizing and maximizing this optimization problem for
states s, s′ ∈ S, respectively. So r̂s,s′ and r̂s,s′ are the upper and lower bounds of the belief
contribution of state s to the new uncertain belief of state s′. Given Bui(s) = [vs, ws], we now
get the following linear inequalities for each state s ∈ S:∑

s′∈S
−r̂s,s′ys′ ≤ −vs,∑

s′∈S
r̂s,s′ys′ ≤ ws.

Note that we changed the summation over the observable successors to a summation over the
set of states S. The contribution coefficients r̂s,s′ and r̂s,s′ are zero for states outside of the
observable successor set, which makes the restricted summation superfluous.

Normalization of distribution constraints

The final adjustment we need to make to the belief distribution constraints is to take nor-
malization into account. Figure 5.3 shows a uPOMDP where we need to normalize the linear
inequalities. In this figure, state B2 has a different observation from all the other states,
indicated by the square state. This means that the belief in state B in an uncertain belief
state will be divided over two successor uncertain belief states, one with observation oval and
one with observation square; Neither uncertain belief state gets the full belief.

A

B

A1

A2

B1

B2

. . .

. . .

. . .

. . .

α
[0.1, 0.9]

[0.1, 0.9]

α
[0.1, 0.9]

[0.1, 0.9]

α

α

α

β

Figure 5.3: uPOMDP information loss example normalization.

To account for the lost belief in a successor uncertain belief state B′, we have to normalize the
linear inequalities in B′

dc. Note that the belief uncertainty intervals B′
ui are already normalized

by the denominator of the objective function.
The coefficients we added to the linear inequalities in B′

dc to deal with multiple belief
sources are computed via a fraction of unnormalized terms. Normalizing these terms would
cancel each other out. Therefore, the only aspect of the linear inequalities we still need to
normalize is the constants, which, until now, were formed by the bounds of the uncertain belief
intervals of old uncertain belief state B. As the old uncertain belief in a state s can now end
up in multiple successor uncertain belief states, we need to use the portion of the uncertain
belief in state s that goes to the successor uncertain belief state under consideration to form
the constants of the linear inequalities.

39

Given an instantiated belief b ∈ B and state transition function P ∈ P , we can normalize the
portion of the belief in a state s that goes to the successor belief b′ ∈ B′ with the total belief
in b′ as follows: ∑

s′∈S O(s′, o)P (s, a, s′)b(s)∑
s′∈S O(s′, o)

∑
s∈S P (s, a, s′)b(s)

To capture the bounds of the normalized uncertain belief in state s that goes to successor
uncertain belief state B′, we can maximize and minimize this function over the instantiations
of the old uncertain belief state B and uncertain state transition function P . Using the same
optimization variable and subvectors as in Section 5.3.1, and given state s ∈ S, we get the
following optimization problem:

Minimize/maximize: ∑
s′∈S O(s′, o)xs,s′ys∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys

Subject to:

x⃗i ∈ P (i, a), i ∈ [n]

y⃗ ∈ B

We elaborate on how to approximate this optimization problem in Chapter 6. Let t̂s and
t̂s be the results of minimizing and maximizing this optimization problem for state s ∈ S,
respectively. So t̂s and t̂s are the upper and lower bounds of the old uncertain belief in state s

that goes to successor uncertain belief state B′ normalized to the total belief of B′. We now
get the following linear inequalities for each state s ∈ S:∑

s′∈S
−r̂s,s′ys′ ≤ −t̂s,∑

s′∈S
r̂s,s′ys′ ≤ t̂s.

These at most 2|S| linear inequalities form the B′
dc set of successor uncertain belief state B′.

Having computed both B′
ui and B′

dc, the uncertain belief update is done, and the successor
uncertain belief state B′ is complete.

5.3.4 Correctness of the uncertain belief update function

Below, we show the correctness of the uncertain belief update, meaning that the successor
beliefs b′ of all valid beliefs b ∈ B in an uncertain belief state B are contained in the successor
uncertain belief state B′ computed with the uncertain belief update.

Theorem 5.3.1:

Let B ∈ B be an uncertain belief state and let b ∈ B be one of the valid beliefs contained in
B. Let P ∈ P be a valid state transition function. Furthermore, given an action a ∈ A and
observation o ∈ Z, let:

40

• b′ ∈ ∆(S) be the successor belief of b after taking action a and observing observation o
computed via the belief update function (Section 4.3.1, definition 4).

• B′ ∈ B be the successor uncertain belief state of B after taking action a and observing
observation o computed via the uncertain belief update function (Section 5.3).

Then we have:
b′ ∈ B′

Proof.
We proof b′ ∈ B′ in three steps: b′ ∈ B′

ui, b
′ ∈ B′

pd, and b′ ∈ B′
dc.

Part A: b′ ∈ B′
ui

A1. Take an arbitrary state s′ ∈ S.

A2. Let b̂s′ = max
b∈B,P∈P

O(s′, o)
∑

s∈S P (s, a, s′)b(s)∑
s′∈S O(s′, o)

∑
s∈S P (s, a, s′)b(s)

and b̂s′ = min
b∈B,P∈P

O(s′, o)
∑

s∈S P (s, a, s′)b(s)∑
s′∈S O(s′, o)

∑
s∈S P (s, a, s′)b(s)

(Section 5.3.1).

A3. Then b̂s′ ≤ b′(s′) ≤ b̂s′ .

A4. By definition, B′
ui(s

′) = [b̂s′ , b̂s′].

A5. Then from (A3) and (A4), it follows that b′(s′) ∈ B′
ui(s

′).

A6. Then from (A1) and (A5), it follows that b′ ∈ B′
ui.

Part B: b′ ∈ B′
pd

B1. b′ ∈ ∆(S), so by definition
∑
s∈S

b′(s) = 1.

b2. Hence, b′ ∈ B′
pd.

Part C: b′ ∈ B′
dc

C1. Assume b′ /∈ B′
dc.

C2. Then ∃s ∈ S such that
∑
s′∈S

r̂s,s′b
′(s′) < t̂s or

∑
s′∈S

r̂s,s′b
′(s′) > t̂s (Section 5.3.3).

C3. Let s ∈ S be a state with
∑
s′∈S

r̂s,s′b
′(s′) < t̂s or

∑
s′∈S

r̂s,s′b
′(s′) > t̂s.

C4. First assume
∑
s′∈S

r̂s,s′b
′(s′) < t̂s.

41

C5. By definition, we know ∀s′ ∈ S : rs,s′ ≤ r̂s,s′ and ts ≥ t̂s.

C6. From (C4) and (C5) it follows that
∑
s′∈S

rs,s′b
′(s′) < ts.

C7. Filling in the definitions of rs,s′ , b′(s′) and ts (Section 5.3.3), we get:

∑
s′∈S

O(s′, o)P (s, a, s′)b(s)

O(s′, o)
∑

s∈S P (s, a, s′)b(s)
·

O(s′, o)
∑

s∈S P (s, a, s′)b(s)∑
s′∈S O(s′, o)

∑
s∈S P (s, a, s′)b(s)

<

∑
s′∈S O(s′, o)P (s, a, s′)b(s)∑

s′∈S O(s′, o)
∑

s∈S P (s, a, s′)b(s)∑
s′∈S

O(s′, o)P (s, a, s′)b(s)∑
s′∈S O(s′, o)

∑
s∈S P (s, a, s′)b(s)

<

∑
s′∈S O(s′, o)P (s, a, s′)b(s)∑

s′∈S O(s′, o)
∑

s∈S P (s, a, s′)b(s)∑
s′∈S O(s′, o)P (s, a, s′)b(s)∑

s′∈S O(s′, o)
∑

s∈S P (s, a, s′)b(s)
<

∑
s′∈S O(s′, o)P (s, a, s′)b(s)∑

s′∈S O(s′, o)
∑

s∈S P (s, a, s′)b(s)

C8. (C7) gives a contradiction, hence our assumption in (C4) is incorrect.

C9. Then, because of (C3), we must assume
∑
s′∈S

r̂s,s′b
′(s′) > t̂s.

C10. By definition, we know ∀s′ ∈ S : rs,s′ ≥ r̂s,s′ and ts ≤ t̂s.

C11. From (C9) and (C10) it follows that
∑
s′∈S

rs,s′b
′(s′) > ts.

C12. Filling in the definitions of rs,s′ , b′(s′) and ts (Section 5.3.3), we get:

∑
s′∈S

O(s′, o)P (s, a, s′)b(s)

O(s′, o)
∑

s∈S P (s, a, s′)b(s)
·

O(s′, o)
∑

s∈S P (s, a, s′)b(s)∑
s′∈S O(s′, o)

∑
s∈S P (s, a, s′)b(s)

>

∑
s′∈S O(s′, o)P (s, a, s′)b(s)∑

s′∈S O(s′, o)
∑

s∈S P (s, a, s′)b(s)∑
s′∈S

O(s′, o)P (s, a, s′)b(s)∑
s′∈S O(s′, o)

∑
s∈S P (s, a, s′)b(s)

>

∑
s′∈S O(s′, o)P (s, a, s′)b(s)∑

s′∈S O(s′, o)
∑

s∈S P (s, a, s′)b(s)∑
s′∈S O(s′, o)P (s, a, s′)b(s)∑

s′∈S O(s′, o)
∑

s∈S P (s, a, s′)b(s)
>

∑
s′∈S O(s′, o)P (s, a, s′)b(s)∑

s′∈S O(s′, o)
∑

s∈S P (s, a, s′)b(s)

C13. (C12) gives a contradiction, hence our assumption in (C10) is incorrect.

C14. From (C2), (C3), (C8), and (C13), it follows that (C1) is incorrect.

C15. Hence b′ ∈ B′
dc.

Since b′ ∈ B′
ui, b

′ ∈ B′
pd, and b′ ∈ B′

dc, we know that b′ ∈ B′.

42

5.4 Uncertain belief state transitions

Having computed a new uncertain belief state B′ ∈ B from an old uncertain belief state
B ∈ B using action a ∈ A and resulting observation o ∈ Z, we need to compute the uncertain
a-transition between B and B′. We combine the a-transitions in the uPOMDP of all states
with a non-zero uncertain belief in uncertain belief state B to all states with observation o.
The a-transitions in the uPOMDP are intervals, and the resulting a-transition in the belief
uMDP needs to be an interval as well.

Given an instantiated belief b ∈ B and instantiated state transition function P ∈ P , we can
compute the combined belief state transition probability P, which is an instantiation of the
uncertain belief state transition function P , for action a to the successor belief b′ ∈ B′ with
SE(b, a, o) = b′ as follows:

P(b, a, b′) =
∑
s′∈S

O(s′, o) ·
∑
s∈S

P (s, a, s′)b(s)

To capture all true possible belief state transition probabilities P, we can maximize and min-
imize the above function over the instantiations of the uncertain belief state B and uncertain
state transition function P . Using the same optimization variable and subvectors as in Section
5.3.1, we get the following optimization problem to compute P(B, a,B′):

Minimize/maximize: ∑
s′∈S

O(s′, o)
∑
s∈S

xs,s′ys

Subject to:

x⃗i ∈ P (i, a), i ∈ [n]

y⃗ ∈ B

We elaborate on how to solve this optimization problem in Chapter 6. Note that this function
is the same as the denominator of the belief uncertainty interval function. This is the uncertain
normalization constant, which represents how much of the belief of the old uncertain belief
state goes to this particular successor uncertain belief state.

5.4.1 Correctness of the uncertain belief state transition function

Below, we show the correctness of the uncertain belief state transition function, meaning that
the a-transitions between all valid beliefs b ∈ B in an uncertain belief state B and their
successor beliefs b′ (which are contained in B′ as shown by Theorem 5.3.1) are contained in
P(B, a,B′).

Theorem 5.4.1:

Let B ∈ B be an uncertain belief state and let b ∈ B be one of the valid beliefs contained in
B. Let P ∈ P be a valid state transition function. Furthermore, given an action a ∈ A and
observation o ∈ Z, let:

43

• b′ ∈ ∆(S) be the successor belief of b after taking action a and observing observation o
computed via the belief update function (Section 4.3.1, definition 4).

• B′ ∈ B be the successor uncertain belief state of B after taking action a and observing
observation o computed via the uncertain belief update function (Section 5.3).

• p = P(b, a, b′) ∈ [0, 1] be the a-transition between b and b′ computed via the belief state
transition function (Section 4.3.1, definition 5).

• p = P(B, a,B′) ∈ IP be the uncertain a-transition between B and b′ computed via the
uncertain belief state transition function (Section 5.4).

Then we have:
p ∈ p

Proof.

1. Let p̂ = max
b∈B,P∈P

∑
s′∈S

O(s′, o) ·
∑
s∈S

P (s, a, s′)b(s)

and p̂ = min
b∈B,P∈P

∑
s′∈S

O(s′, o) ·
∑
s∈S

P (s, a, s′)b(s) (Section 5.4).

2. Then p̂ ≤ p ≤ p̂.

3. By definition, p = [p̂, p̂].

4. Then from (2) and (3), it follows that p ∈ p.

5.5 Uncertain rewards

Given an uncertain belief state B ∈ B and action a ∈ A, we combine the reward for taking
that action for all states with a non-zero uncertain belief in B. Since the uncertain belief of
a state is an interval, the reward will also be an interval.

Given an instantiation b ∈ B, we can compute the combined reward for taking action a as
follows:

R(b, a) =
∑
s∈S

b(s)R(s, a)

To capture all true possible rewards R ∈ R, we can maximize and minimize the above function
over the instantiations of the uncertain belief state B. We get the following optimization
problem to compute R(B, a):

We use the optimization variable:

y⃗ =
[
y1 . . . yn

]
44

Then we need to minimize/maximize: ∑
s∈S

ysR(s, a)

Subject to:

y⃗ ∈ B

We again elaborate on how to solve this optimization problem in Chapter 6.

5.5.1 Correctness of the uncertain reward function

Below, we show the correctness of the uncertain reward function, meaning that the a-rewards
of all valid beliefs b ∈ B in an uncertain belief state B are contained in R(B, a).

Theorem 5.5.1:

Let B ∈ B be an uncertain belief state and let b ∈ B be one of the valid beliefs contained in
B. Furthermore, given an action a ∈ A, let:

• r = R(b, a) ∈ R be the reward after taking action a from belief b computed via the
reward function (Section 4.3.1, definition 5).

• r = R(B, a) ∈ IR be the uncertain reward after taking action a from uncertain belief
state B computed via the uncertain reward function (Section 5.5).

Then we have:
r ∈ r

Proof.

1. Let r̂ = max
b∈B

∑
s∈S

b(s)R(s, a)

and r̂ = min
b∈B

∑
s∈S

b(s)R(s, a) (Section 5.5).

2. Then r̂ ≤ r ≤ r̂.

3. By definition, r = [r̂, r̂].

4. Then from (2) and (3), it follows that r ∈ r.

45

5.6 Correctness of the belief uMDP

Now that we have our definition of the belief uMDP, we show that it indeed over-approximates
the true belief uMDP, meaning the belief MDP of all POMDPs of the uPOMDP are contained
in the belief uMDP.

Note that we need an initial (uncertain) belief to compute the belief MDPs and belief uMDP.
We can manually set this. The initial uncertain belief state needs to contain all true initial
beliefs. We include this assumption in our correctness theorem.

Theorem 5.6.1:

Let M be a uPOMDP and let M ∈ M be one of the POMDPs in M . Furthermore, let:

• M = (B, A,P,R) be the belief MDP of POMDP M .

• M = (B, A,P ,R) be the belief uMDP of uPOMDP M as defined in this chapter.

• b0 ∈ B be the initial belief state of M.

• B0 ∈ B be the initial uncertain belief state of M.

Then we have:
b0 ∈ B0 −→ M ∈ M

Proof.

1. Assume b0 ∈ B0.

2. As shown by Theorem 5.3.1, a successor uncertain belief state B′ contains all successor
beliefs b′ of all valid beliefs b ∈ B contained in the previous uncertain belief state.

3. From (1) and (2), it follows that all successor beliefs of b0, forming the belief states of
belief MDP M, are contained in the uncertain belief states of belief uMDP M.

4. As shown by Theorem 5.4.1, all transitions between beliefs b ∈ B and successor beliefs
b′ ∈ B′ in uncertain belief state B and successor uncertain belief state B′ are contained
in the uncertain belief state transition function P .

5. Hence, if the uncertain belief states contain all beliefs of belief MDP M, the uncertain
belief state transition function P contains all belief state transitions of belief MDP M.

6. So from (3) and (5), it follows that the uncertain belief state transition function P
contains the belief state transition function P.

7. As shown by Theorem 5.5.1, all rewards of valid beliefs b ∈ B in an uncertain belief
state B are contained in the uncertain reward function R.

8. Hence, if the uncertain belief states contain all beliefs of belief MDP M, the uncertain
reward function R contains all true rewards of belief MDP M.

9. So from (3) and (8), it follows that the uncertain reward function R contain the reward
function R.

46

10. From (1), (3), (6), and (9), we conclude that

b0 ∈ B0 −→ M ∈ M

.

5.7 Example

We now have the complete definition of the belief uMDP. As mentioned multiple times in the
previous sections, we discuss how to deal with the various optimization problems that follow
from this definition in Chapter 6. Using that information, we can give a small example belief
uMDP of the cheese maze uPOMDP, just like we did with the belief MDP of the cheese maze
POMDP in Section 4.3.3. Figure 5.4 illustrates the cheese maze uPOMDP, where states with
the same observation have the same colour.

Figure 5.4: Cheese maze uPOMDP.

We again take the initial belief that there is an 80% chance that the mouse is in square 8
and a 10% chance that it is in square 9 or 10. The belief uMDP results in an infinite amount
of belief states. For example purposes, we shall only expand the uncertain belief states that
correspond with the belief states in the belief MDP example. We compute the partial belief
uMDP using one of the implementations discussed in Chapter 7. Figure 5.5 illustrates the
partial belief uMDP.

47

Figure 5.5: Cheese maze belief uMDP.

The colours only indicate the observations the belief states correspond to: the belief states are
fully observable and hence distinguishable for the agent. Below we provide the belief uncer-
tainty intervals Bui and additional distribution constraints Bdc for each uncertain belief state
B in the example. We omit states with a zero belief and distribution constraints concerning a
single state. Note that we did not draw loops in this example belief uMDP, hence some states
have the same Bui and Bdc

b0ui : {s8 7→ [0.8, 0.8], s9 7→ [0.1, 0.1], s10 7→ [0.1, 0.1]}

b1ui : {s5 7→ [0.68, 0.76], s6 7→ [0.085, 0.095], s7 7→ [0.085, 0.095], s8 7→ [0.04, 0.12],

s9 7→ [0.005, 0.015], s10 7→ [0.005, 0.015]}
b1dc : {ys5 + ys8 = 0.8, ys7 + ys9 = 0.1, ys6 + ys10 = 0.8}

b2ui : {s11 7→ [0.795, 0.993], s12 7→ [0.099, 0.124]}

b3ui : {s8 7→ [0.267, 1], s9 7→ [0.033, 0.3]} s10 7→ [0.033, 0.3]}

b4ui : {s13 7→ [1, 1]}

b5ui : {s5 7→ [0.344, 1], s6 7→ [0.033, 0.252], s7 7→ [0.033, 0.252], s8 7→ [0.009, 0.104],

s9 7→ [0.001, 0.021], s10 7→ [0.001, 0.021]}
b5dc : {0.838ys5 + ys8 ≥ 0.191, 0.838ys7 + ys9 ≥ 0.019, 0.838ys6 + ys10 ≥ 0.019,

0.224ys5 + ys8 ≤ 0.691, 0.224ys7 + ys9 ≤ 0.140, 0.224ys6 + ys10 ≤ 0.140}

b6ui : {s0 7→ [1, 1]}

b7ui : {s4 7→ [1, 1]}

b8ui : {s2 7→ [1, 1]}

b9ui : {s11 7→ [0.651, 1.0], s12 7→ [0.036, 0.305]}

b10ui : {s5 7→ [0.038, 0.122], s6 7→ [0.004, 0.016], s7 7→ [0.004, 0.016], s8 7→ [0.657, 0.780],

48

s9 7→ [0.077, 0.105], s10 7→ [0.077, 0.105]}
b10dc : {ys5 + ys8 ≥ 0.764, ys7 + ys9 ≥ 0.090, ys6 + ys10 ≥ 0.090,

ys5 + 0.870ys8 ≤ 0.814, ys7 + 0.870ys9 ≤ 0.110, ys6 + 0.870ys10 ≤ 0.110}

b11ui : {s13 7→ [1, 1]}

b12ui : {s11 7→ [0.292, 1.0], s12 7→ [0.033, 0.373]}

b13ui : {s8 7→ [0.784, 1.0], s9 7→ [0.089, 0.139]}

b14ui : {s5 7→ [0.34, 0.887], s6 7→ [0.028, 0.285], s7 7→ [0.028, 0.285], s8 7→ [0.02, 0.14],

s9 7→ [0.002, 0.045], s10 7→ [0.002, 0.045]}
b14dc : {ys5 + ys8 ≥ 0.4, ys7 + ys9 ≥ 0.033, ys6 + ys10 ≥ 0.033,

ys5 + ys8 ≤ 0.933, ys7 + ys9 ≤ 0.3, ys6 + ys10 ≤ 0.3}

b15ui : {s11 7→ [0.511, 1.0], s12 7→ [0.031, 0.479]}

b16ui : {s8 7→ [0.133, 1], s9 7→ [0.011, 0.9]} s10 7→ [0.011, 0.9]}

b17ui : {s13 7→ [1, 1]}

We can now see that the probability distributions of the belief states of the belief MDP of
Section 4.3.3 are contained in the probability intervals of the corresponding uncertain belief
states in the belief uMDP:

Belief MDP Belief uMDP
b0 ∈ b0

b1 ∈ b1

b2 ∈ b2

b3 ∈ b4

b4 ∈ b5

b5 ∈ b6

b6 ∈ b8

b7 ∈ b7

b8 ∈ b10

b9 ∈ b13

Looking at the transitions, we see that the belief MDP probability is not always contained in
the belief uMDP probability interval. However, this is because we rounded the transitions in
the belief MDP, which we did not do in the belief uMDP.

5.8 Benefits of the belief uMDP

We briefly discussed the benefits of the belief uMDP in the Introduction. Here, we repeat
those benefits and give a bit more detail.

49

The main benefit of defining the belief uMDP is that it paves the way for transforming belief-
based approaches for POMDPs to uncertain belief-based approaches for uPOMDPs. Most
obviously, as the belief uMDP is a uMDP, we can use uMDP algorithms to compute finite
horizon policies for uPOMDPs [Nilim and Ghaoui, 2005, Wiesemann et al., 2013, Givan et al.,
2000]. Moreover, there are various POMDP policy computation algorithms that use the belief
update function, which we can try and lift to the uncertain setting using the uncertain belief
update [Shani et al., 2013, Walraven and Spaan, 2019].

Another possible application of the uncertain belief update function is robust reinforcement
learning for POMDPs [Kaelbling et al., 1996]. Note that both suggested applications of the
uncertain belief update function require future research.

Furthermore, once a finite horizon belief uMDP is computed, it can be reused to compute
policies with objectives such as worst-case expected reward or satisfaction of temporal logic
formula [Baier and Katoen, 2008]. For direct policy computation on uPOMDPs, policies for
different objectives require full recomputation. The belief uMDP works as a saving point and
reduces the recomputation requirement to the finite horizon uMDP policy computation.

Moreover, the belief uMDP provides a visual representation of the uncertainty up to a
finite horizon. This visual representation can provide insight into which uncertain transitions
have a lot of influence on the amount of uncertainty in the agent’s belief, i.e., the size of the
belief uncertainty intervals and which do not. Identification of problematic uncertainties could
help make effective choices regarding system improvement.

50

Chapter 6

Solving and approximating the
optimization problems

In this chapter, we discuss how we deal with the optimization problems that follow from our
definition of the belief uMDP and the associated functions as defined in Chapter 5. We be-
gin by elaborating on the feasible sets that the various optimization problems maximize and
minimize over. Next, in Section 6.2, we give an overview of the optimization problems and
categorize them per type. In Sections 6.3 to 6.5, we flesh out different ways of solving or
approximating the non-linear optimization problems. We discuss two concrete approximation
methods in Sections 6.6 to 6.7. Finally, in Section 6.8, we evaluate the suggested approxima-
tion methods.

Note that when we talk about approximation, we mean approximation of an interval. An
under-approximation is a sub-interval of the true interval, and an over-approximation is a
super-interval of the true interval.

6.1 Overview of the feasible sets

The optimization problems from Chapter 5 are all defined over an uncertain belief state, the
uncertain state transition function, or both. Below we demonstrate how to write these feasible
sets as convex polytopes in the canonical matrix form.

6.1.1 Optimizing over an uncertain belief state

Let n = |S|. We use the optimization variable:

y⃗ =
[
y1 . . . yn

]
This optimization variable consists of n elements to hold the belief in each state. Let B be
the uncertain belief state we optimize over. We list the linear equalities we get per set of B.

Let [vk, wk] = Bui(k). We get the following linear inequalities:

51

∀k ∈ [n] :

−yk ≤ −vk

yk ≤ wk

Furthermore, we get the two linear inequalities from Bpd that restrict instantiations of uncer-
tain belief state B to probability distributions.∑

k∈[n]

−yk ≤ −1

∑
k∈[n]

yk ≤ 1

And finally, we get the linear inequalities of Bdc. Let m = |Bdc|. Given linear inequality
eh ∈ Bdc with h ∈ [m], let e⃗h be the n-sized coefficient vector and let e∗h be the constant. We
get the following linear inequalities:

∀h ∈ [m] : ∑
k∈[n]

eh,kyk ≤ e∗h

We can write the convex polytope formed by the uncertain belief state B in the canonical
matrix form, based on [Suilen et al., 2020]:

AB y⃗ ≤ c⃗B

Where:

E =
[
e⃗h

T for h ∈ [m]
]

AT
B =

[
−In In HT

n −HT
n E

]

c⃗TB =
[
−v1 . . . −vn w1 . . . wn 1 −1 e∗1 . . . e∗m

]
Where In is the n× n identity matrix.
Where Hn is the 1× n single row matrix consisting of only ones.

6.1.2 Optimizing over the uncertain state transition function

Given an action a ∈ A, we first describe how to define the convex polytope for the uncertain
a-transitions from a single state i ∈ S and then combine them into a big convex polytope for
the entire uncertain state transition function P for action a.

52

Uncertain a-transitions from a single state

We use the optimization variable:

x⃗ =
[
x1 . . . xn

]
This optimization variable consists of n elements representing the a-transitions from state i
to the other states.

Let [rj , tj] = P (i, a, j). We get the following linear inequalities:

∀j ∈ [n] :

−xj ≤ −rj
∑
j∈[n]

−xj ≤ −1

xj ≤ tj
∑
j∈[n]

xj ≤ 1

We can write the convex polytope formed by the uncertain transition function for state i and
action a in the canonical matrix form, based on [Suilen et al., 2020]:

AP (i,a)x⃗ ≤ c⃗P (i,a)

Where:

AT
P (i,a) =

[
−In In HT

n −HT
n

]
c⃗TP (i,a) =

[
−r1 . . . −rn t1 . . . tn 1 −1

]
Where In is the n× n identity matrix.
Where Hn is the 1× n single row matrix consisting of only ones.

Uncertain a-transitions from all states

We use the optimization variable:

x⃗ =
[
x1,1 . . . xn,n

]
This optimization variable consists of n2 elements representing the states’ transitions. We can
write the combined convex polytope formed by the uncertain transition function for action a
for each state i ∈ S in the canonical matrix form, based on [Suilen et al., 2020]:

AP (·,a)x⃗ ≤ c⃗P (·,a)

53

Where:

O =
[
On On KT

n KT
n

]
AT

P (·,a) =

AT

P (1,a) O . . . O

O AT
P (2,a) . . . O

...
...

. . .
...

O O . . . AT
P (n,a)



c⃗TP (·,a) =
[
c⃗TP (1,a) . . . c⃗TP (n,a) 1 −1

]
Where On is the n× n zero matrix.
Where Kn is the 1× n single row matrix consisting of only zeros.

6.1.3 Combining the feasible sets

We combine the feasible sets of an uncertain belief state B and the uncertain state transition
function P for action a into a single convex polytope

We use the optimization variable:

x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

]
This optimization variable consists of n2 elements representing the transitions between the
states and n elements representing the belief in each state.

We can write the combined convex polytope in the canonical matrix form, based on [Suilen
et al., 2020]:

AB,P (·,a)x⃗ ≤ c⃗B,P (·,a)

Where:

O =
[
On On KT

n KT
n

]
L = O +

[
KT

n for h ∈ [m]
]

AT
B,P (·,a) =



AT
P (1,a) O . . . O L

O AT
P (2,a) . . . O L

...
...

. . .
...

...
O O . . . AT

P (n,a) L

O O . . . O AT
B



c⃗TB,P (·,a) =
[
c⃗TP (1,a) . . . c⃗TP (n,a) c⃗TB

]
54

Where On is the n× n zero matrix.
Where Kn is the 1× n single row matrix consisting of only zeros.

6.2 Overview of the optimization problems

Below, we list all the optimization problems we need to deal with to compute a belief uMDP.
We categorize them based on the type of optimization problem. All optimization problems
are linearly constrained.

Linear programs

Optimization variables Objective function (min/max) Feasible set
Uncertain reward function (Section 5.5)

y⃗ =
[
y1 . . . yn

] ∑
s∈S

ysR(s, a) AB y⃗ ≤ c⃗B

Quadratic programs

Optimization variables Objective function (min/max) Feasible set
Uncertain transition function (Section 5.4)

x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

] ∑
s′∈S

O(s′, o)
∑
s∈S

xs,s′ys AB,P (·,a)x⃗ ≤ c⃗B,P (·,a)

Quadratic fractional programs

Optimization variables Objective function (min/max) Feasible set
Belief uncertainty intervals (Section 5.3.1)

x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

] O(s′, o)
∑

s∈S xs,s′ys∑
s′∈S O(s′, o)

∑
s∈S xs,s′ys

AB,P (·,a)x⃗ ≤ c⃗B,P (·,a)

Belief contribution for states with multiple belief sources (Section 5.3.3)

x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

] O(s′, o)xs,s′ys
O(s′, o)

∑
s∈S xs,s′ys

AB,P (·,a)x⃗ ≤ c⃗B,P (·,a)

Normalization of belief distribution constraints (Section 5.3.3)

x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

] ∑
s′∈S O(s′, o)xs,s′ys∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys
AB,P (·,a)x⃗ ≤ c⃗B,P (·,a)

6.3 Solving linear programs

As previously mentioned in Section 3.3, linear programs can be solved exactly, upto a given
accuracy, in polynomial time with methods like Dantzig’s simplex method and interior-point

55

methods [Boyd and Vandenberghe, 2014]. State-of-the-art mathematical optimization solvers
use these methods to solve linear programs in seconds. In this thesis, we use the optimization
solver Gurobi to solve the linear programs [Gurobi Optimization, LLC, 2023].

6.4 Solving and approximating quadratic programs

As shown in [Sahni, 1974], the general global optimization of quadratic programs is NP-
hard. Polynomial-time algorithms exist for convex quadratic programs, such as interior-point
methods [Boyd and Vandenberghe, 2014], but the function we need to optimize is non-convex.
We prove the non-convexity of this function in Appendix A.1.
Given a non-convex quadratic program, some mathematical optimization solvers, like Gurobi
[Gurobi Optimization, LLC, 2023], are able to find globally optimal solutions. For those cases
where such an optimization solver is unavailable or unable to find an optimal solution within
a reasonable time, we also consider two approximation methods.

As mentioned in Section 5.2.1, any approximations used to compute a finite horizon belief
uMDP should over-approximate. The two approximation methods we consider for computing
bounds on uncertainty intervals do not meet this requirement, as both return a value within the
true possible interval as bound. The first method we consider is random sampling, which can be
used for any optimization problem. The second function we consider is Two-phase Successive
Linear Programming Algorithm (2pSLPA), which only applies to quadratic programs. We
discuss the two approximation methods in Sections 6.6 and 6.7, respectively.

6.4.1 Independent transitions

As explained above, without any additional information, finding an exact solution for a non-
convex quadratic program is difficult. However, because of the (s,a)-rectangularity assumption
(see Section 4.4.3), we have additional information about our optimization problems: The un-
certain state transition function P is independent between the states. This means the outgoing
transitions of one state are completely unrelated to those of another state. This allows us to
transform the quadratic program into multiple linear ones.

We begin by transforming the quadratic function of the uncertain belief state transition func-
tion a bit. Remember that we maximize and minimize over the instantiations b ∈ B of
the uncertain belief state B and P ∈ P of the uncertain state transition function P and
SE(b, a, o) = b′. Using the commutative, associative, and distributive properties of summa-
tions and multiplications, we can rewrite it as follows:

P(b, a, b′) =
∑
s′∈S

O(s′, o) ·
∑
s∈S

P (s, a, s′)b(s)

=
∑
s′∈S

∑
s∈S

O(s′, o)b(s)P (s, a, s′)

=
∑
s′∈S

∑
s∈S

b(s)O(s′, o)P (s, a, s′)

=
∑
s∈S

b(s) ·
∑
s′∈S

O(s′, o)P (s, a, s′)

56

The subfunction
∑

s′∈S O(s′, o)P (s, a, s′) does not depend on the belief. We always need the
maximum of the subfunction to maximize or the minimum of the subfunction to minimize
the total optimization problem. We hence get two lemmas. We provide the proof for the
minimization Lemma 6.4.1. The maximization proof directly follows by symmetry.

Lemma 6.4.1:

min
b∈B,P (·,a)∈P (·,a)

∑
s∈S

b(s)·
∑
s′∈S

O(s′, o)P (s, a, s′) = min
b∈B

∑
s∈S

b(s)· min
P (s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P (s, a, s′)

Proof.

1. Let v = min
b∈B,P (·,a)∈P (·,a)

∑
s∈S

b(s) ·
∑
s′∈S

O(s′, o)P (s, a, s′).

2. Let b ∈ B and P (·, a) ∈ P (·, a) be the instatiations that resulted in v.

3. Assume that ∃s ∈ S : b(s) ̸= 0 ∧
∑
s′∈S

O(s′, o)P (s, a, s′) ̸= min
P ′(s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P ′(s, a, s′).

4. Let P ′(s, a) be the partial instatiation that minimizes min
P ′(s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P ′(s, a, s′).

5. Then
∑
s′∈S

O(s′, o)P ′(s, a, s′) <
∑
s′∈S

O(s′, o)P (s, a, s′).

6. And b(s) ·
∑
s′∈S

O(s′, o)P ′(s, a, s′) < b(s) ·
∑
s′∈S

O(s′, o)P (s, a, s′).

7. Since the uncertain state transition function is independent between the states, we can
set the rest of P ′(·, a) equal to P (·, a).

8. Hence ∀s′′ ∈ S \ {s} : b(s′′) ·
∑
s′∈S

O(s′, o)P ′(s′′, a, s′) = b(s′′) ·
∑
s′∈S

O(s′, o)P (s′′, a, s′).

9. Then, from (6) and (8), it follows that:∑
s∈S

b(s) ·
∑
s′∈S

O(s′, o)P ′(s, a, s′) <
∑
s∈S

b(s) ·
∑
s′∈S

O(s′, o)P (s, a, s′) = v.

10. Hence, from (1), (2), and (9), we get a contradiction.

11. Therefore, the assumption made in (3) is false.

12. So we get ∀s ∈ S :

b(s) ̸= 0 →
∑
s′∈S

O(s′, o)P (s, a, s′) = min
P ′(s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P ′(s, a, s′).

13. Furthermore, ∀s ∈ S :

b(s) = 0 → b(s) ·
∑
s′∈S

O(s′, o)P (s, a, s′) = b(s) · min
P ′(s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P ′(s, a, s′).

57

14. Then from (1), (12), and (13), it follows that:

min
b∈B,P (·,a)∈P (·,a)

∑
s∈S

b(s)·
∑
s′∈S

O(s′, o)P (s, a, s′) = min
b∈B

∑
s∈S

b(s)· min
P (s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P (s, a, s′).

Lemma 6.4.2:

max
b∈B,P (·,a)∈P (·,a)

∑
s∈S

b(s)·
∑
s′∈S

O(s′, o)P (s, a, s′) = max
b∈B

∑
s∈S

b(s)· max
P (s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P (s, a, s′)

Now that we have proven the equivalences, we can split the optimization problem into two
steps. First, we precompute the minimums and maximums of the subfunction

∑
s′∈S O(s′, o)P (s, a, s′)

over the instantiations of the uncertain transition function P for each state-action-observation
triple. Second, we use these minimums to minimize, and maximums to maximize the total
function over the instantiations of the old uncertain belief state B.

Given a state i ∈ S, action a ∈ A, and observation o ∈ Z, we get the following optimization
problems for the first step.

Optimization variables Objective function (min/max) Feasible set
Precomputing observable transition sums

x⃗ =
[
x1 . . . xn

] ∑
s′∈S

O(s′, o)xs′ AP (i,a)x⃗ ≤ c⃗P (i,a)

Let x̂i be the maximum observable transition sum for state i
Let x̂i be the minimum observable transition sum for state i

We get the following optimization problems for the second step.

Optimization variables Objective function (max) Feasible set
Upper bound uncertain belief state transition

y⃗ =
[
y1 . . . yn

] ∑
s∈S

ysx̂s AB y⃗ ≤ c⃗B

Optimization variables Objective function (min) Feasible set
Lower bound uncertain belief state transition

y⃗ =
[
y1 . . . yn

] ∑
s∈S

ysx̂s AB y⃗ ≤ c⃗B

The new optimization problems are all linear programs and can hence, as described in Section
6.3, be solved exactly in polynomial time.

58

6.5 Approximating quadratic fractional programs

The final three optimization problems are all quadratic fractional programs. All three functions
are non-convex, as shown in Appendices A.2 to A.4. Moreover, the quadratic sub-functions
that form the numerators and denominators are non-convex as well, as shown in Appen-
dices A.5 to A.7.

We investigated whether Gurobi could solve the non-convex quadratic fractional programs,
but Gurobi does not allow for a fraction of two quadratic functions as the objective function.
Additionally, we tried to move the denominator to the constraints by using an extra variable,
but Gurobi also does not allow this.

Existing research on approximating quadratic fractional programs all rely on some form of
convexity or are restricted in the type or number of constraint functions [Beck and Teboulle,
2010, Nguyen et al., 2014, Xu and Zhou, 2021] and are therefore not applicable to our opti-
mization problems.

As explained in Section 6.4, we can under-approximate any function using random sampling.
We discuss this approximation method in Section 6.6. To get an over-approximation of the
non-convex quadratic programs, we can instead decide to decouple some of the optimization
variables between the numerator and denominator. We discuss full decoupling and partial
decoupling in the next two Sections.

6.5.1 Full decoupling

To over-approximate the quadratic fractional programs, we can compute the bounds of the
numerators and denominators separately. This means we can use different instantiations of
the old uncertain belief state B and the uncertain state transition function P to optimize the
numerator than we use to optimize the denominator. We completely decouple the optimiza-
tion variables between the two functions.

Given a fractional function f(x⃗) =
g(x⃗)

h(x⃗)
with U the feasible set of x⃗.

Let n̂ = max
x⃗∈U

g(x⃗).

Let n̂ = min
x⃗∈U

g(x⃗).

Let d̂ = max
x⃗∈U

h(x⃗).

Let d̂ = min
x⃗∈U

h(x⃗).

Then we can compute an upper bound f̂(x⃗) and lower bound f̂(x⃗) as follows:

f̂(x⃗) =
n̂

d̂
,

f̂(x⃗) =
n̂

d̂
.

59

Which over-approximates the true bounds of f(x⃗):

f̂(x⃗) ≤ min
x⃗∈U

f(x⃗) ≤ max
x⃗∈U

f(x⃗) ≤ f̂(x⃗).

Note that the computed bounds of the numerator and denominator functions must either be
exact or over-approximations of the true bounds of those functions for this full decoupling
approach to over-approximates the true bounds of the entire quadratic fractional programs.
Otherwise, it becomes unclear whether the computed bounds are under or over-approximating
the true bounds.

We get the following new optimization problems for the numerators of the three quadratic
fractional programs. We can leave out the denominator functions, as other quadratic functions
already cover these.

Optimization variables Objective function (min/max) Feasible set
Belief uncertainty intervals (numerator)

x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

]
O(s′, o)

∑
s∈S

xs,s′ys AB,P (·,a)x⃗ ≤ c⃗B,P (·,a)

Belief contribution for states with multiple belief sources (numerator)

x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

]
O(s′, o)xs,s′ys AB,P (·,a)x⃗ ≤ c⃗B,P (·,a)

Normalization of belief distribution constraints (numerator)

x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

] ∑
s′∈S

O(s′, o)xs,s′ys AB,P (·,a)x⃗ ≤ c⃗B,P (·,a)

As mentioned above, the numerator and denominator functions are non-convex quadratic
functions, so we end up with non-convex quadratic programs. We discuss how to solve or ap-
proximate this type of program in Section 6.4. Note that we can again use the independence
of transitions between the states to solve these non-convex quadratic programs using linear
programs, as discussed in Section 6.4.1.

To use the linear transformation for the new quadratic programs, we need to prove six lemmas.
One for minimizing and one for maximizing each new quadratic function. Note that in the
lemmas below, we have already rewritten the functions as we did in Section 6.4.1, moving the
belief optimization variables to the front. We omit the proofs of these lemmas, as they follow
from the proof for Lemma 6.4.1.

Lemma 6.5.1:

min
b∈B,P (·,a)∈P (·,a)

∑
s∈S

b(s) ·O(s′, o)P (s, a, s′) = min
b∈B

∑
s∈S

b(s) · min
P (s,a)∈P (s,a)

O(s′, o)P (s, a, s′)

Lemma 6.5.2:

max
b∈B,P (·,a)∈P (·,a)

∑
s∈S

b(s) ·O(s′, o)P (s, a, s′) = max
b∈B

∑
s∈S

b(s) · max
P (s,a)∈P (s,a)

O(s′, o)P (s, a, s′)

60

Lemma 6.5.3:

min
b∈B,P (·,a)∈P (·,a)

b(s) ·O(s′, o)P (s, a, s′) = min
b∈B

b(s) · min
P (s,a)∈P (s,a)

O(s′, o)P (s, a, s′)

Lemma 6.5.4:

max
b∈B,P (·,a)∈P (·,a)

b(s) ·O(s′, o)P (s, a, s′) = max
b∈B

b(s) · max
P (s,a)∈P (s,a)

O(s′, o)P (s, a, s′)

Lemma 6.5.5:

min
b∈B,P (·,a)∈P (·,a)

b(s) ·
∑
s′∈S

O(s′, o)P (s, a, s′) = min
b∈B

b(s) · min
P (s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P (s, a, s′)

Lemma 6.5.6:

max
b∈B,P (·,a)∈P (·,a)

b(s) ·
∑
s′∈S

O(s′, o)P (s, a, s′) = max
b∈B

b(s) · max
P (s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P (s, a, s′)

6.5.2 Partial decoupling

Instead of completely splitting the numerator and denominator functions, we can decouple
only the uncertain state transition optimization variables. This approach leads to a smaller
over-approximation than full decoupling but is only applicable because we have an uncertain
state transition function with independence between the states. For similar problems without
this independence, the optimization problem remains a quadratic fractional program after
partial decoupling.

Similar to the approach for quadratic programs, as explained in Section 6.4.1, we begin by
transforming the objective functions of the quadratic fractional programs a bit. Remember
that we maximize and minimize over the instantiations b ∈ B of the uncertain belief state B
and P ∈ P of the uncertain state transition function P . Using the commutative, associative,
and distributive properties of summations and multiplications, we can rewrite the three func-
tions as follows:

O(s′, o)
∑

s∈S P (s, a, s′)b(s)∑
s′∈S O(s′, o)

∑
s∈S P (s, a, s′)b(s)

===⇒
∑

s∈S b(s)O(s′, o)P (s, a, s′)∑
s∈S b(s)

∑
s′∈S O(s′, o)P (s, a, s′)

O(s′, o)P (s, a, s′)b(s)

O(s′, o)
∑

s∈S P (s, a, s′)b(s)
===⇒ b(s)O(s′, o)P (s, a, s′)∑

s∈S b(s)O(s′, o)P (s, a, s′)

∑
s′∈S O(s′, o)P (s, a, s′)b(s)∑

s′∈S O(s′, o)
∑

s∈S P (s, a, s′)b(s)
===⇒

b(s)
∑

s′∈S O(s′, o)P (s, a, s′)∑
s∈S b(s)

∑
s′∈S O(s′, o)P (s, a, s′)

Next, we decouple the uncertain state transition function between the numerator and the
denominator. We add an extra optimization variable z⃗ =

[
z1,1 . . . zn,n

]
with feasible set

AP (·,a)z⃗ ≤ cP (·,a) to the optimization problems to represent the second instantiation of the
uncertain state transition function. For simplicity, we do not combine this optimization vari-
able and feasible set with those of the original problem. We end up with the following three
quadratic fractional programs:

61

Optimization variables Objective function (min/max) Feasible set
Belief uncertainty intervals

x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

]
z⃗ =

[
z1,1 . . . zn,n

] ∑
s∈S ysO(s′, o)xs,s′∑

s∈S ys
∑

s′∈S O(s′, o)zs,s′

AB,P (·,a)x⃗ ≤ c⃗B,P (·,a)

AP (·,a)z⃗ ≤ cP (·,a)

Belief contribution for states with multiple belief sources

x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

]
z⃗ =

[
z1,1 . . . zn,n

] ysO(s′, o)xs,s′∑
s∈S ysO(s′, o)zs,s′

AB,P (·,a)x⃗ ≤ c⃗B,P (·,a)

AP (·,a)z⃗ ≤ cP (·,a)

Normalization of belief distribution constraints

x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

]
z⃗ =

[
z1,1 . . . zn,n

] ys
∑

s′∈S O(s′, o)xs,s′∑
s∈S ys

∑
s′∈S O(s′, o)zs,s′

AB,P (·,a)x⃗ ≤ c⃗B,P (·,a)

AP (·,a)z⃗ ≤ cP (·,a)

For all three functions, both the numerator and the denominator have subfunctions that do
not rely on the belief. Because of the partial decoupling, we now always need to minimize
the numerator subfunction and maximize the denominator subfunction to minimize the total
optimization problems, and vice versa to maximize it. We get six lemmas, one for minimizing
and one for maximizing each partially decoupled quadratic fractional program. We only
provide the proof for Lemma 6.5.7. The rest of the proofs follow the same steps.

Lemma 6.5.7:

min
b∈B,P (·,a)∈P (·,a),

P ′(·,a)∈P (·,a)

∑
s∈S

b(s)O(s′, o)P (s, a, s′)∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P ′(s, a, s′)
= min

b∈B

∑
s∈S

b(s) min
P (·,a)∈P (s,a)

O(s′, o)P (s, a, s′)∑
s∈S

b(s) max
P ′(·,a)∈P (s,a)

∑
s′∈S

O(s′, o)P ′(s, a, s′)

Proof.
Part A: Minimizing the numerator.

A1. Let v = min
b∈B,P (·,a)∈P (·,a),

P ′(·,a)∈P (·,a)

∑
s∈S

b(s)O(s′, o)P (s, a, s′)∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P ′(s, a, s′)
.

A2. Let b ∈ B and P (·, a), P ′(·, a) ∈ P (·, a) be the instatiations that resulted in v.

A3. Assume that ∃s ∈ S : b(s) ̸= 0 ∧ O(s′, o)P (s, a, s′) ̸= min
P ◦(s,a)∈P (s,a)

O(s′, o)P ◦(s, a, s′).

A4. Let P ◦(s, a) be the partial instatiation that minimizes min
P ◦(s,a)∈P (s,a)

O(s′, o)P ◦(s, a, s′).

A5. Then O(s′, o)P ◦(s, a, s′) < O(s′, o)P (s, a, s′).

62

A6. And
b(s)O(s′, o)P ◦(s, a, s′)∑

s∈S
b(s)

∑
s′∈S

O(s′, o)P ′(s, a, s′)
<

b(s)O(s′, o)P (s, a, s′)∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P ′(s, a, s′)
.

A7. Since the uncertain state transition function is independent between the states, we can
set the rest of P ◦(·, a) equal to P (·, a).

A8. Hence ∀s′′ ∈ S \ {s} :
b(s′′)O(s′, o)P ◦(s′′, a, s′)∑

s∈S
b(s)

∑
s′∈S

O(s′, o)P ′(s, a, s′)
=

b(s′′)O(s′, o)P (s′′, a, s′)∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P ′(s, a, s′)
.

A9. Then, from (A6) and (A8), it follows that:∑
s∈S

b(s)O(s′, o)P ◦(s, a, s′)∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P ′(s, a, s′)
<

∑
s∈S

b(s)O(s′, o)P (s, a, s′)∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P ′(s, a, s′)
= v.

A10. Hence, from (A1), (A2), and (A9), we get a contradiction.

A11. Therefore, the assumption made in (A3) is false.

A12. So we get ∀s ∈ S :

b(s) ̸= 0 → O(s′, o)P (s, a, s′) = min
P ′(s,a)∈P (s,a)

O(s′, o)P ′(s, a, s′).

A13. Furthermore, ∀s ∈ S :

b(s) = 0 → b(s)O(s′, o)P (s, a, s′) = b(s) min
P ′(s,a)∈P (s,a)

O(s′, o)P ′(s, a, s′).

A14. Then from (A1), (A12) and (A13) it follows that:

min
b∈B,P (·,a)∈P (·,a),

P ′(·,a)∈P (·,a)

∑
s∈S

b(s)O(s′, o)P (s, a, s′)∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P ′(s, a, s′)
= min

b∈B,P ′(·,a)∈P (·,a)

∑
s∈S

b(s) min
P (·,a)∈P (s,a)

O(s′, o)P (s, a, s′)∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P ′(s, a, s′)

63

Part B: Maximizing the denominator.

B1. Now assume that ∃s ∈ S :

b(s) ̸= 0 ∧
∑
s′∈S

O(s′, o)P ′(s, a, s′) ̸= max
P△(s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P△(s, a, s′).

B2. Let P△(s, a) be the partial instatiation that maximizes max
P△(s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P△(s, a, s′).

B3. Then
∑
s′∈S

O(s′, o)P△(s, a, s′) >
∑
s′∈S

O(s′, o)P (s, a, s′).

B4. Since the uncertain state transition function is independent between the states, we can
set the rest of P△(·, a) equal to P (·, a).

B5. Hence ∀s′′ ∈ S \ {s} :
∑
s′∈S

O(s′, o)P△(s, a, s′) =
∑
s′∈S

O(s′, o)P ′(s, a, s′).

B6. Then, from (B3) and (B5), it follows that:∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P△(s, a, s′) >
∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P ′(s, a, s′).

B7. And hence: ∑
s∈S

b(s)O(s′, o)P (s, a, s′)∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P△(s, a, s′)
<

∑
s∈S

b(s)O(s′, o)P (s, a, s′)∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P ′(s, a, s′)
= v.

B8. Then, from (A1), (A2), and (B7), we get a contradiction.

B9. Therefore, the assumption made in (B1) is false.

B10. So we get ∀s ∈ S :

b(s) ̸= 0 →
∑
s′∈S

O(s′, o)P ′(s, a, s′) = max
P△(s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P△(s, a, s′).

B11. Furthermore, ∀s ∈ S :

b(s) = 0 → b(s)
∑
s′∈S

O(s′, o)P ′(s, a, s′) = b(s) max
P△(s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P△(s, a, s′).

B12. Then from (A1), (A14), (B10) and (B11) it follows that:

min
b∈B,P (·,a)∈P (·,a),

P ′(·,a)∈P (·,a)

∑
s∈S

b(s)O(s′, o)P (s, a, s′)∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P ′(s, a, s′)
= min

b∈B

∑
s∈S

b(s) min
P (·,a)∈P (s,a)

O(s′, o)P (s, a, s′)∑
s∈S

b(s) max
P ′(·,a)∈P (·,a)

∑
s′∈S

O(s′, o)P ′(s, a, s′)

64

Lemma 6.5.8:

max
b∈B,P (·,a)∈P (·,a),

P ′(·,a)∈P (·,a)

∑
s∈S

b(s)O(s′, o)P (s, a, s′)∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P ′(s, a, s′)
= max

b∈B

∑
s∈S

b(s) max
P (s,a)∈P (s,a)

O(s′, o)P (s, a, s′)∑
s∈S

b(s) min
P ′(s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P ′(s, a, s′)

Lemma 6.5.9:

min
b∈B,P (·,a)∈P (·,a),

P ′(·,a)∈P (·,a)

b(s)O(s′, o)P (s, a, s′)∑
s∈S

b(s)O(s′, o)P ′(s, a, s′)
= min

b∈B

b(s) min
P (s,a)∈P (s,a)

O(s′, o)P (s, a, s′)∑
s∈S

b(s) max
P ′(s,a)∈P (s,a)

O(s′, o)P ′(s, a, s′)

Lemma 6.5.10:

max
b∈B,P (·,a)∈P (·,a),

P ′(·,a)∈P (·,a)

b(s)O(s′, o)P (s, a, s′)∑
s∈S

b(s)O(s′, o)P ′(s, a, s′)
= max

b∈B

b(s) max
P (s,a)∈P (s,a)

O(s′, o)P (s, a, s′)∑
s∈S

b(s) min
P ′(s,a)∈P (s,a)

O(s′, o)P ′(s, a, s′)

Lemma 6.5.11:

min
b∈B,P (·,a)∈P (·,a),

P ′(·,a)∈P (·,a)

b(s)
∑
s′∈S

O(s′, o)P (s, a, s′)∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P ′(s, a, s′)
= min

b∈B

b(s) min
P (s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P (s, a, s′)∑
s∈S

b(s) max
P ′(s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P ′(s, a, s′)

Lemma 6.5.12:

max
b∈B,P (·,a)∈P (·,a),

P ′(·,a)∈P (·,a)

b(s)
∑
s′∈S

O(s′, o)P (s, a, s′)∑
s∈S

b(s)
∑
s′∈S

O(s′, o)P ′(s, a, s′)
= max

b∈B

b(s) max
P (s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P (s, a, s′)∑
s∈S

b(s) min
P ′(s,a)∈P (s,a)

∑
s′∈S

O(s′, o)P ′(s, a, s′)

Having these equivalences, we can split the three quadratic fractional optimization problems
into two steps. First, we precompute the minimums and maximums of the subfunctions
O(s′, o)P (s, a, s′) and

∑
s′∈S O(s′, o)P (s, a, s′) over the instantiations of the uncertain transi-

tion function P . Second, we use these minimums to minimize, and maximums to maximize
the total function over the instantiations of the old uncertain belief state B.

We get one new optimization problem for the first steps of the optimization problems for
the subfunction O(s′, o)P (s, a, s′). Note that we already discuss the second subfunction∑

s′∈S O(s′, o)P (s, a, s′) in Section 6.4.1, as it also appears in the uncertain transition function.
Given states i, j ∈ S, action a ∈ A, and observation o ∈ Z, we get:

Optimization variables Objective function (min/max) Feasible set
Precomputing observable transitions

x⃗ =
[
x1 . . . xn

]
O(j, o)xj AP (i,a)x⃗ ≤ c⃗P (i,a)

Let ŵi,j be the maximum observable transition from state i to state j
Let ŵi,j be the minimum observable transition from state i to state j

65

We use the notations introduced in Section 6.4.1 for the second subfunction:
Let x̂i be the maximum observable transition sum for state i
Let x̂i be the minimum observable transition sum for state i

We get the following optimization problems for the second step:

Optimization variables Objective function (max) Feasible set
Belief uncertainty intervals

y⃗ =
[
y1 . . . yn

] ∑
s∈S ysŵs,s′∑
s∈S ysx̂s

AB y⃗ ≤ c⃗B

Belief contribution for states with multiple belief sources

y⃗ =
[
y1 . . . yn

] ysŵs,s′∑
s∈S ysŵs,s′

AB y⃗ ≤ c⃗B

Normalization of belief distribution constraints

y⃗ =
[
y1 . . . yn

] ysx̂s∑
s∈S ysx̂s

AB y⃗ ≤ c⃗B

Optimization variables Objective function (min) Feasible set
Belief uncertainty intervals

y⃗ =
[
y1 . . . yn

] ∑
s∈S ysŵs,s′∑
s∈S ysx̂s

AB y⃗ ≤ c⃗B

Belief contribution for states with multiple belief sources

y⃗ =
[
y1 . . . yn

] ysŵs,s′∑
s∈S ysŵs,s′

AB y⃗ ≤ c⃗B

Normalization of belief distribution constraints

y⃗ =
[
y1 . . . yn

] ysx̂s∑
s∈S ysx̂s

AB y⃗ ≤ c⃗B

The new optimization problems are all linear fractional programs. As explained in the section
below, we can transform these into linear programs with the Charnes-Cooper transformation.

Alternatively, we can try to solve the linear fractional programs by directly using the
mathematical optimization solver Gurobi. Gurobi again does not allow for a fraction as the
objective function, but this time moving the denominator to the constraints and introducing
an extra variable does work.

Minimize
f(x⃗)

g(x⃗)

subject to Ax⃗ ≤ b⃗

66

We can transform it to:

Minimize z

subject to Ax⃗ ≤ b⃗

z · g(x⃗) = f(x⃗)

The resulting programs that Gurobi solves are quadratically constrained linear programs.

Charnes-Cooper transformation

Given a non-empty and bounded feasible set, the Charnes-Cooper transformation [Charnes
and Cooper, 1962] states that given an optimization problem over an optimization variable x⃗:

Maximize
c⃗T x⃗+ α

d⃗
T
x⃗+ β

subject to Ax⃗ ≤ b⃗

We can transform it to:

Maximize c⃗T y⃗ + αt

subject to Ay⃗ ≤ b⃗t

d⃗
T
y⃗ + βt = 1

t ≥ 0

Using that:

y⃗ =
1

d⃗
T
x⃗+ β

· x⃗

t =
1

d⃗
T
x⃗+ β

Then given the y⃗ ∗ and t∗ that maximize the transformed problem, we obtain the solution x⃗ ∗

to the original optimization problem by setting:

x⃗ ∗ =
1

t∗
y⃗ ∗

In the same way, we can transform a minimization problem.

Since the linear numerator and denominator functions of our linear fractional programs do not
have a constant part, we can simplify the transformation. Given an optimization problem:

Maximize
c⃗T x⃗

d⃗
T
x⃗

subject to Ax⃗ ≤ b⃗

67

We can transform it to:

Maximize c⃗T y⃗

subject to Ay⃗ ≤ b⃗t

d⃗
T
y⃗ = 1

t ≥ 0

Using that:

y⃗ =
1

d⃗
T
x⃗
· x⃗

t =
1

d⃗
T
x⃗

Then, again, given the y⃗ ∗ and t∗ that maximize the transformed problem, we obtain the
solution x⃗ ∗ to the original optimization problem by setting:

x⃗ ∗ =
1

t∗
y⃗ ∗

Using this simplified transformation, we end up with the following six linear optimization
problems. To prevent confusion, we use a fresh optimization variable v⃗ =

[
v1 . . . vn

]
and

add optimization variable t:

Optimization variables Objective function (max) Feasible set Subject to
Belief uncertainty intervals

v⃗ =
[
v1 . . . vn

]
, t

∑
s∈S

vsŵs,s′ AB v⃗ ≤ c⃗Bt
∑
s∈S

vsx̂s = 1

t ≥ 0

Belief contribution for states with multiple belief sources

v⃗ =
[
v1 . . . vn

]
, t vsŵs,s′ AB v⃗ ≤ c⃗Bt

∑
s∈S

vsŵs,s′ = 1

t ≥ 0

Normalization of belief distribution constraints

v⃗ =
[
v1 . . . vn

]
, t vsx̂s AB v⃗ ≤ c⃗Bt

∑
s∈S

vsx̂s = 1

t ≥ 0

68

Optimization variables Objective function (min) Feasible set Subject to
Belief uncertainty intervals

v⃗ =
[
v1 . . . vn

]
, t

∑
s∈S

vsŵs,s′ AB v⃗ ≤ c⃗Bt
∑
s∈S

vsx̂s = 1

t ≥ 0

Belief contribution for states with multiple belief sources

v⃗ =
[
v1 . . . vn

]
, t vsŵs,s′ AB v⃗ ≤ c⃗Bt

∑
s∈S

vsŵs,s′ = 1

t ≥ 0

Normalization of belief distribution constraints

v⃗ =
[
v1 . . . vn

]
, t vsx̂s AB v⃗ ≤ c⃗Bt

∑
s∈S

vsx̂s = 1

t ≥ 0

Note that we can transform the linear equality constraints in the last column to ≤-inequalities,
as explained in Section 3.3.2, and combine them into the feasible set convex polytope. How-
ever, for the readability of the new linear optimization problems, we leave them in this form.

Solving these linear programs completes the second and final step of solving the partially
decoupled quadratic fractional programs.

6.6 Random sampling

Given an optimization variable x⃗, objective function f , and feasible set Ax⃗ ≤ c⃗, we can
generate a set of random samples in the feasible set. A sample is an instantiation of the
optimization variable that satisfies all linear inequalities of the feasible set. Applying the
objective function to each sample and taking the maximum and minimum gives us an under-
approximation of the true upper and lower bounds of f(x⃗).

The more samples you generate, the higher the chance of sampling the instantiations that
maximize and minimize the objective function, or at least instantiations that get close to it.
As not all feasible sets have an equal amount of uncertainty, we determine the number of sam-
ples to generate using a spud-parameter (samples per uncertainty distance): we compute the
amount of uncertainty based on the interval constraints and multiply this by the spud. Note
that additional, non-interval constraints that might decrease the total amount of uncertainty
are not taken into account here.

We use a straightforward algorithm for generating samples. For simplicity, we assume the
feasibility set has a probability distribution constraint over the entire optimization variable.
All of the feasible sets in this thesis either have this constraint or consist of smaller independent
feasible sets that have that constraint. Those smaller independent feasible sets can then each
be sampled in the way described below and straightforwardly combined to form a sample for
the entire feasible set.

69

1. Start with an all-zero sample z⃗.
2. Let Xnz be the variables x ∈ x⃗ with non-zero intervals [ax, bx] in the feasible set.
3. For each x ∈ Xnz except the last one: Generate a random value vx ∈ [ax, bx].
4. For the last x′ ∈ Xnz: Compute vx′ = 1−

∑
x∈Xnz

vx.

5. Check whether vx′ ∈ [ax′ , bx′].

− If so, ∀x ∈ Xnz set zx = vx.
− If not, return to step 3.

6. Check whether z⃗ meets the additional, non-interval constraints (if there are any).

− If so, z⃗ is a valid sample.
− If not, set z⃗ back to a zero vector and return to step 3.

As mentioned before, we can compute samples from independent smaller feasible sets sep-
arately and combine them later. We call the samples from the uncertain state transition
function feasible sets AP (i,a)x⃗ ≤ cP (i,a) the i-transition samples. We call the samples from an
uncertain belief state feasible set ABx⃗ ≤ cB the belief samples.

As the uncertain state transition function never changes, we can precompute a set of i-
transition samples for each state i ∈ S. Whenever we need a complete sample to apply the
objective function, we can randomly select samples from the precomputed transition samples
and combine them with freshly computed belief samples.

This precomputation approach can greatly improve the computation time. However, it
does result in a possible partial overlap between samples and hence reduced randomness. The
more transitions are precomputed, the more randomness remains. The number of precomputed
transition samples should therefore be a factor larger than the spud parameter used for the
belief samples. We use a factor parameter to indicate the factor.

6.7 Two-phase Succesive Linear Programming Algorithm

Given an optimization variable x⃗, non-convex quadratic objective function f and feasible set
Ax⃗ ≤ c⃗, we can compute upper and lower bounds of f(x⃗) using the approximate algorithm
Two-phase Successive Linear Programming Algorithm (2pSLPA) given in [Bentobache et al.,
2022]. We chose this algorithm as it nicely fits the constraints of our problem. Let n be the
length of x⃗ and let m be the length of c⃗, the number of constraints in Ax⃗ ≤ c⃗. We summarize
the steps below:

We begin by describing the function in its general form:

f(x⃗) = 1
2 x⃗

TDx⃗+ c⃗T x⃗

Where x⃗, c⃗ ∈ Rn and D ∈ Rn×n and D is indefinite and symmetric. Since none of the quadratic
functions in this thesis have a linear part, we can leave that out and simplify some steps in
the algorithm.

f(x⃗) = 1
2 x⃗

TDx⃗

Let U be the feasible set described by the feasible set Ax⃗ ≤ c⃗. We first provide the SLPA algo-
rithm. Note that we adjusted the notation to match with the rest of this thesis. Furthermore,
we omitted some irrelevant steps because of the indefiniteness of D.

70

1. Choose r ∈ N∗ and set k = 0
2. Choose an (n× r)-matrix H = (h⃗j | j ∈ {1 . . . r}, h⃗j ∈ Rn) and set J = ∅;
3. For j ∈ {1 . . . r}: if h⃗j

T
Dh⃗j ̸= 0, then calculate:

• γj =
−2h⃗j

T
(Dx⃗k+c⃗)

h⃗j
T
Dh⃗j

(=
−2h⃗j

T
Dx⃗k

h⃗j
T
Dh⃗j

because our functions have no linear parts)

• y⃗j = x⃗k + γj h⃗j
• J = J ∪ {j}

{y⃗j | j ∈ J} forms an approximation set1 of f(x⃗0). Not all y⃗j are necessarily feasible.
4. For j ∈ J , calculate the vectors u⃗j ∈ argminx⃗∈U x⃗T∇f(y⃗j)
5. Calculate the index p ∈ J , such that f(u⃗p) = minj∈J f(u⃗j)
6. If f(u⃗p) < f(x⃗k):

• u⃗p improves the current local solution
• Set k = k + 1
• Got to step 2

...
13. Calculate x⃗k ∈ argminx⃗∈U x⃗T∇f(x⃗k).

If (x⃗k − x⃗k)
T∇f(x⃗k) ≥ 0, then the algorithm stops with the improved stationary point

x⃗∗ = x⃗k. Else, go to step 14
14. By starting at x⃗k, apply the Conditional Gradient Algorithm (CGA) to get an improved

stationary point x⃗∗.

For efficiently solving the quadratic program, [Bentobache et al., 2022] proposes the following
Two-phase version
Phase 1:

1. Calculate x⃗0 ∈ argminx⃗∈U c⃗T x⃗
Compute a minimal solution for the linear part of the non-convex quadratic function.
Since our numerator and denominator do not have a linear part, we can take a random
feasible point here.

2. Compute a stationary point x⃗∗ by following steps 1 through 12 of the SLPA algorithm
with r = n and H = In. When H is the identity matrix, step 3 of the SLPA algorithm
will check for any squares in D. Since neither the numerator nor the denominator has
this, J will remain the empty set, and the other steps will be skipped.

Phase 2:

3. Choose

r =

10n if n < 100 and m > 0

n otherwise

and generate random matrix H = (hi,j | i ∈ {1 . . . n}, j ∈ {1 . . . r}) using the uniform
distribution on [−1, 1]. Apply the SLPA algorithm starting from x⃗∗, which still is x⃗0 in
our case.

In our case, because of the lack of a linear part, this two-phase version primarily provides a
starting point for applying the standard SLPA algorithm.

1An approximation set of a point z⃗ and function f is a finite subset of the level curve: the set of all points
y⃗ ∈ Rn with f(y⃗) = f(z⃗).

71

6.8 Evaluation of the approximations

Throughout this chapter, we have discussed various ways of solving and approximating the
optimization problems that follow from our definition of the belief uMDP. We summarize them
below.

Linear programs:

• Solve using a mathematical optimization solver.

Quadratic programs:

• Random sampling.

• Two-phase Successive Linear Programming Algorithm.

• Linear transformation.

Quadratic fractional programs:

• Random sampling.

• Full decoupling.

– Random sampling.

– Two-phase Successive Linear Programming Algorithm.

– Linear transformation.

• Partial decoupling.

– Linear fractional transformation.

∗ Solve using a mathematical optimization solver.
∗ Charnes-Cooper transformation.

Because of the state independence of the uncertain state transition function, we can solve
many of the optimization (sub-)problems using linear programs. The quadratic fractional
programs still require approximation. In Chapter 7, we implement the belief uMDP compu-
tation, which allows us to compare the different approximation methods. As full decoupling
leads to a larger over-approximation than partial decoupling, and both can be transformed
into linear programs, we do not consider full decoupling worth comparing. We do consider
the random sampling approach a promising method, as a tight under-approximation could be
more useful than a big over-approximation. The three most promising approximation meth-
ods are hence random sampling and partial decoupling with and without the Charnes-Cooper
transformation.

72

Chapter 7

Numerical experiments

In this chapter, we compare the three most promising approximation methods for the non-
convex quadratic fractional programs, introduced in Chapter 6, via numerical experiments.
In Section 7.1, we discuss, on a high level, what we implemented to perform the numerical
experiments. Section 7.2 describes the four uPOMDP problems we use for the experiments.
Next, we describe our experiments in Section 7.3. And finally, we present and analyze the
results of the experiments in Section 7.4. The code used for these numerical experiments is
available at: GitHub

7.1 Implementation

We implement the entire computation process of a belief uMDP. This roughly consists of
reading the uPODMP problem from an input file, precomputing various linear programs,
and unfolding uncertain belief states, so computing all successor uncertain belief states and
corresponding uncertain transitions and rewards until a time limit is reached. We chose to
work with a time limit for the sake of the numerical experiments, but this can easily be changed
to work with a horizon-based limit instead. We do not check for duplicate uncertain belief
states during the unfolding process. We use a precision parameter to round computed values.
Consequently, we need a lower bound to prevent values from becoming 0. We base this lower
bound on the precision parameter.

As discussed in Section 6.8, the three most promising approximation methods are random
sampling and partial decoupling with and without the Charnes-Cooper transformation. We
only split the implementation between these three methods in the uncertain belief update,
using the same code for the rest of the computation. We use the mathematical optimization
solver Gurobi to solve all linear programs for the computation of the uncertain transition and
reward functions and all linear (fractional) programs that follow from the chosen approxima-
tion methods.

We store all computed uncertain belief states, transitions, and rewards data. Additionally,
we store the time after each completely explored uncertain belief state, meaning all successor
uncertain belief states have been computed.

73

https://github.com/ElineBovy/Master-thesis

7.2 Problem descriptions

We compare the different approximation methods on three small uPOMDPs based on well-
known POMDP problems: the cheese maze [McCallum, 1993], the tiger problem [Kaelbling
et al., 1998], and the grid-world robot [Littman et al., 1995]. We extend them to uPOMDPs,
as in [Suilen et al., 2020, Itoh and Nakamura, 2007]. The base versions of these problems use
uncertainty intervals of size 0.1. We define four uncertainty variants and two size variants of
each base problem to compare the effects of increased uncertainty and size on the approxima-
tion methods. Hence, we end up with seven versions in total. The four uncertainty variants
each increase the uncertainty interval by 0.1. We discuss the two size variants separately for
each smaller uPOMDP.

Additionally, we consider a larger, more realistic uPOMDP: the robust aircraft collision
avoidance problem [Kochenderfer, 2015]. We refer to this problem as the aircraft problem.
This problem is also used to benchmark the uPOMDP policy computation algorithms in
[Cubuktepe et al., 2021, Suilen et al., 2020]. Our implementation of this problem is based on
[Cubuktepe et al., 2021].

Below, we introduce the problems in more detail1. The fully specified uPOMDP tuples of
the base versions of the smaller problems can be found in Appendix B. We do not provide
the fully specified uPOMDP tuple for the aircraft problem, but instead, we give the PRISM
model [Kwiatkowska et al., 2011] and the parser used to generate the input data on GitHub.
The headers in the overview tables in the subsections have the following meanings:

Problem The name of the problem.
Size The size version of the problem
Unc. The size of the uncertainty intervals.
|S| The number of states.
|A| The number of actions.
|Z| The number of observations.

7.2.1 Cheese maze

As explained in Section 4.1, the cheese maze problem is about a mouse looking for a piece
of cheese in a maze. The maze consists of 14 squares, and the mouse can only observe the
position of the walls, not its true position. The mouse can move in any cardinal direction
unless blocked by a wall. Once the mouse reaches the cheese in square 13, it will stay there.

The maze is slippery, and the chance of successfully reaching a state is uncertain. Whenever
the mouse tries to move, the chance of reaching the intended square lies between 85% and
95%, and the chance of staying in the same square lies between 5% and 15%.

The mouse does not know its initial position. It believes with 80% that it is in square 8,
but also with 10% that it is in square 9 or 10.

1The figures accompanying the problem descriptions were made using images from flaticon.com

74

flaticon.com

Below, we shortly discuss the size alterations made to the above-described base version of the
cheese maze problem. Figure 7.1 depicts the three size versions. Table 7.1 gives an overview
of the seven versions of the cheese maze problem we use for the numerical experiments.

Size

We make two variants of the cheese maze problem with an increased size. We keep the un-
certainty intervals at size 0.1 for all size versions. We add one or two extra arches to the
maze. The uncertain observation and transition functions follow the same rules as in the base
version. The initial belief is again divided over all lower vertical halls, with a 10% chance of
being in all but the left-most lower vertical hall, which has the remaining belief.

(a) Base version. (b) Size 2 version.

(c) Size 3 version.

Figure 7.1: Size versions of the cheese maze problem.

Problem Unc. Size |S| |A| |Z|
Cheese maze 0.1 base 14 5 7
Cheese maze 0.2 base 14 5 7
Cheese maze 0.3 base 14 5 7
Cheese maze 0.4 base 14 5 7
Cheese maze 0.5 base 14 5 7
Cheese maze 0.1 s2 19 5 7
Cheese maze 0.1 s3 24 5 7

Table 7.1: Overview of the cheese maze problem versions.

75

7.2.2 Tiger problem

In the tiger problem, the agent stands in front of two doors. Behind one door is a tiger,
representing a big negative reward, and behind the other door is money, representing a medium
positive reward. There is an equal chance of the tiger being behind the left and right doors.

The agent must choose between opening one of the doors or listing to gain more information
about the tiger’s location. If the agent chooses to open a door, it receives the corresponding
reward, and the problem resets. If the agent chooses to listen, it observes the tiger either left
or right. This observation is not flawless: the chance of hearing the tiger correctly lies between
80% and 90%, meaning the chance of mishearing it lies between 10% and 20%. The agent can
listen as often as it wants, but every time it does, it receives a small negative reward.

The agent starts with the initial belief that there is an equal chance of the tiger being
behind the left and right doors.

Below, we shortly discuss the size alterations made to the above-described base version of the
tiger problem. Figure 7.2 depicts the three size versions. Table 7.2 gives an overview of the
seven versions of the tiger problem we use for the numerical experiments.

Size

We make two variants of the tiger problem with an increased size. We keep the uncertainty
intervals at size 0.1 for all size versions. We add one or two extra doors, hence one or two
additional observations and actions. There is still only one tiger. All other doors have rewards
behind them. At the start and after each reset, there is an equal chance of the tiger being
behind any of the doors. The agent’s belief also changes accordingly. For the size 2 version,
we use uncertainty intervals of [0.3, 0.4] as rounding 1

3 would require an uneven probability
distribution over the doors.

76

(a) Base version. (b) Size 2 version.

(c) Size 3 version.

Figure 7.2: Size versions of the tiger problem.

Problem Unc. Size |S| |A| |Z|
Tiger problem 0.1 base 6 3 3
Tiger problem 0.2 base 6 3 3
Tiger problem 0.3 base 6 3 3
Tiger problem 0.4 base 6 3 3
Tiger problem 0.5 base 6 3 3
Tiger problem 0.1 s2 12 4 4
Tiger problem 0.1 s3 20 5 5

Table 7.2: Overview of the tiger problem versions.

7.2.3 Grid-world robot

In the grid-world robot problem, a robot must move through a grid world and reach the
southeast corner. The grid world is a 3× 3 square and hence consists of 9 squares. The robot
can only observe the number of walls surrounding its current square and does not know its
true position. Additionally, the robot can observe when it has reached its goal.

As long as the robot has not reached its goal, it can move in any of the four cardinal
directions. If the robot chooses to move towards a wall, he will remain in the same square. If
the robot chooses to move toward another square, there is a chance of deviating to one of the
diagonally adjacent squares. The chance of deviating to diagonally adjacent squares always
lies between 5% and 15%. The chance of reaching the intended square depends on whether
there are one or two unblocked diagonally adjacent squares. If the robot can only deviate to

77

one square, the chance of reaching the intended square lies between 85% and 95%. If it can
deviate to two squares, the chance lies between 75% and 85%.

At the start, the robot believes with 80% that it is in the northwest corner, and with 10%
that it is in the northeast or southwest corner.

Below, we shortly discuss the size alterations made to the above-described base version of
the grid-world robot problem. Figure 7.3 depicts the three size versions. Table 7.3 gives
an overview of the seven versions of the grid-world robot problem we use for the numerical
experiments.

Size

We make two variants of the grid-world robot problem with an increased size. We keep the
uncertainty intervals at size 0.1 for all size versions. We increase the width and height of the
grid by one or two. The uncertain observation and transition functions follow the same rules
as in the base problem. The initial belief is also still distributed over the non-goal corners.

(a) Base version. (b) Size 2 version. (c) Size 3 version.

Figure 7.3: Size versions of the grid-world robot problem.

Problem Unc. Size |S| |A| |Z|
Grid-world robot 0.1 base 9 5 4
Grid-world robot 0.2 base 9 5 4
Grid-world robot 0.3 base 9 5 4
Grid-world robot 0.4 base 9 5 4
Grid-world robot 0.5 base 9 5 4
Grid-world robot 0.1 s2 16 5 4
Grid-world robot 0.1 s3 25 5 4

Table 7.3: Overview of the grid-world robot problem versions.

7.2.4 Aircraft

In the aircraft problem, a pilot must reach a target while avoiding collision with an intruder
aircraft in a two-dimensional space by adjusting the acceleration of its aircraft. The states
are based on the relative distance and speed difference in the x and y directions between the

78

aircraft and the intruder aircraft. The pilot of the aircraft cannot determine the exact distance
to the intruder aircraft but instead observes an area of possible distances.

Whenever the pilot needs to make an acceleration choice, there is only a 70% to 90% chance
that the pilot is responsive, resulting in a 10% to 30% chance of continuing with the same
acceleration. The acceleration of the intruder aircraft is determined probabilistically, having
a 20% to 80% chance of it being increased and a 20% to 80% chance of it being decreased in
each direction.

The pilot starts with a 100% belief that it is in the area one diagonal removed from the
southeast corner of the two-dimensional space.

Problem |S| |A| |Z|
Aircraft 10159 8 35

Table 7.4: Overview of the aircraft problem.

7.3 Experiments

For each of the 22 problem versions, we compute six belief uMDPs: two for the partial decou-
pling methods and four for the random sampling method, varying with the spud and factor
parameters. This means in total, we compute 132 different belief uMDPs. We introduce the
abbreviations used to describe the methods below, also recapping the methods briefly.

PD Charnes-Cooper
Partial decoupling with the Charnes-Cooper transformation, solving the resulting linear pro-
gram with Gurobi.

PD Gurobi
Partial decoupling, solving the resulting linear fractional program with Gurobi.

Sampling spud, ffactor
Pregenerating random uncertain transition function samples with the number of samples based
on spud and factor, as explained in Section 6.6. Then, for each successor uncertain belief
state, generating random uncertain belief state samples with the number of samples based on
spud, applying the function on all samples and taking the minimum and maximum. The four
variants of the random sampling method are formed by the combinations of spud ∈ {100, 1000}
and factor ∈ {2, 5}.

We use a time limit of 60 minutes for the aircraft problem and a time limit of 5 minutes
for the 21 smaller problems. This time limit includes reading the input and any required
precomputation or pregeneration. We run the experiments on a computer with an Intel Core
i7-7500u 2.70 GHz processor and 8 GB of RAM. We use Gurobi version 10.0.

Using these experiments, we want to compare the approximation methods based on:

1. The speed of computing a finite horizon belief uMDP.

79

2. The approximation quality of the computed finite horizon belief uMDPs.

Additionally, we want to investigate the effect of:

1. Increased uncertainty.
2. Increased size.

On those same points.

7.4 Results

We summarize the results in tables. The headers have the following meanings:

Problem The name of the problem.
Method The approximation method used.
Size The size version of the problem
Unc. The size of the uncertainty intervals.
Min. The timelimit in minutes.
Expl. The uncertain belief states fully explored within the time limit. Fully explored means

all successor uncertain belief states have been computed.
Found The uncertain belief states found within the time limit. Found means the uncertain

belief state has been computed, but its successor uncertain belief states not neces-
sarily.

Hor. The largest completed horizon.

7.4.1 Base versions

Table 7.5 summarizes the results of the experiments performed on the base versions of the
problems. Below, we discuss the number of explored uncertain belief states and the belief
uncertainty intervals.

80

Problem Method Min. Expl. Found Hor.
Aircraft PD Charnes-Cooper 60 5734 7966 17
Aircraft PD Gurobi 60 3321 5553 16
Aircraft Sampling 100, f2 60 22 28 7
Aircraft Sampling 100, f5 60 22 28 7
Aircraft Sampling 1000, f2 60 17 22 7
Aircraft Sampling 1000, f5 60 4 4 3

Cheese maze PD Charnes-Cooper 5 8923 37497 7
Cheese maze PD Gurobi 5 3395 14134 6
Cheese maze Sampling 100, f2 5 1033 4177 5
Cheese maze Sampling 100, f5 5 1061 4299 6
Cheese maze Sampling 1000, f2 5 55 216 3
Cheese maze Sampling 1000, f5 5 55 216 3

Tiger problem PD Charnes-Cooper 5 1433 5733 6
Tiger problem PD Gurobi 5 1275 5101 5
Tiger problem Sampling 100, f2 5 1228 4915 5
Tiger problem Sampling 100, f5 5 1264 5058 5
Tiger problem Sampling 1000, f2 5 143 575 4
Tiger problem Sampling 1000, f5 5 143 573 4

Grid-world robot PD Charnes-Cooper 5 6199 44107 5
Grid-world robot PD Gurobi 5 4229 30144 4
Grid-world robot Sampling 100, f2 5 2041 14591 4
Grid-world robot Sampling 100, f5 5 2094 14966 4
Grid-world robot Sampling 1000, f2 5 236 1713 3
Grid-world robot Sampling 1000, f5 5 239 1733 3

Table 7.5: Overview of the results of the experiments on the base versions.

Explored uncertain belief states

Looking at the results, we see that the two partial decoupling methods evidently outperform
the sampling methods regarding the number of explored uncertain belief states. Especially
PD Charnes-Cooper, which explores the highest number of uncertain belief states in every
experiment we performed. With this method, we can unfold the belief uMDP of a reasonably
large and realistic problem, the aircraft problem, up to horizon 17 within one hour.

As the sampling methods require more precomputation than the partial decoupling meth-
ods, the big gap between the number of explored uncertain belief states can be partially
ascribed to the pregeneration of the uncertain transition function samples. In Figure 7.4, we
plot the total passed time against the number of explored uncertain belief states, excluding the
precomputation. This figure shows that the partial decoupling methods are also substantially
faster with exploring uncertain belief states.

81

100 101 102 103

Nr. explored states

10 2

10 1

100

101

102

103

To
ta

l t
im

e
(s

ec
on

ds
)

Aircraft: Total time vs. nr. explored states

pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

Figure 7.4: Total time vs. the number of explored states in the aircraft problem.

For the aircraft problem, PD Carnes-Cooper outperforms PD Gurobi from the start. We
see in some of the other problems that occasionally, PD Gurobi starts faster. However, PD
Charnes-Cooper always overtakes PD Gurobi before the time limit.

As expected, the sampling methods with a larger spud value explore less uncertain belief
states and are slower in their exploration. A larger factor value seems to have little effect
on the number of explored uncertain belief states, despite requiring a longer precomputation.
This could be because generating samples for the uncertain transition function is relatively
easy compared to generating those for an uncertain belief state since the uncertain transition
function samples are not restricted by additional constraints. Hence, generating uncertain
belief state samples might overshadow the additional precomputation time.

Belief uncertainty intervals

The first thing to note when looking at the computed belief uncertainty intervals is that, as
expected, the two partial decoupling method return almost exactly the same values. Not only
for the belief uncertainty intervals but also for the additional distribution constraints and the
uncertain transitions and rewards. The largest value difference between these two methods
for the aircraft problem is 0.000006. These differences are likely caused by tiny differences in
the optimal values returned by Gurobi, which stack by continued exploration.

It is difficult to say anything concrete about the quality of the approximations since we do
not know the true values of the optimization problems. However, as we consider both under-
and over-approximation methods, we can compute some upper and lower bounds on the er-
rors in the belief uncertainty intervals. Note that we talk about the error with respect to
the optimization problem here and not with respect to the true uncertain beliefs that these
optimization problems over approximate.

We take one of the sampling methods with spud value 1000, which in general gives the
closest under-approximation, and compute the differences in uncertainty interval size with the
other methods. Figure 7.5 plots the computed differences for each base version problem. Note

82

that these plots are limited by the relatively few data points we have for the sampling methods
with spud value 1000.

0 20 40 60 80 100 120
Nr. uncertain intervals

0.2

0.1

0.0

0.1

0.2

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

Aircraft: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(a) Aircraft.

0 50 100 150 200
Nr. uncertain intervals

0.4

0.2

0.0

0.2

0.4

0.6

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

Cheese Maze: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(b) Cheese maze.

0 100 200 300 400 500
Nr. uncertain intervals

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

tiger_problem_u1: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(c) Tiger problem.

0 100 200 300 400 500 600
Nr. uncertain intervals

0.2

0.0

0.2

0.4

0.6

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

grid_world_robot_u1: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(d) Grid-world Robot.

Figure 7.5: Difference in belief uncertainty intervals compared to sampling methods with spud
value 1000.

Since we know that the correct belief uncertainty intervals are greater than or equal to those
computed by the random sampling methods with spud value 1000, the negative differences
with other sampling methods are lower bounds on the errors for those uncertainty intervals.
Similarly, we know that the positive differences with the partial decoupling methods are upper
bounds on the errors for those belief uncertainty intervals. The upper and lower bounds on
the errors differ strongly between the uPOMDP problems.

As expected, the sampling methods with the larger spud value, in general, have larger belief
uncertainty intervals, meaning a closer approximation, than the sampling methods with the
smaller spud value. The larger factor value seems to have little effect on the size of the belief
uncertainty intervals.

7.4.2 The effect of increased uncertainty

Next, we look at the effect of increased uncertainty in the smaller uPOMDP problems. Ta-
bles 7.6 to 7.8 summarize the results of the experiments performed on the increased uncertainty
versions of the problems. We grouped the results per method. Below, we again discuss the
number of explored uncertain belief states and the belief uncertainty intervals.

83

Problem Method Unc. Min. Expl. Found Hor.
Cheese maze PD Charnes-Cooper 0.1 5 8923 37497 7
Cheese maze PD Charnes-Cooper 0.2 5 6341 26556 7
Cheese maze PD Charnes-Cooper 0.3 5 7353 30771 7
Cheese maze PD Charnes-Cooper 0.4 5 8618 36110 7
Cheese maze PD Charnes-Cooper 0.5 5 4922 20436 7
Cheese maze PD Gurobi 0.1 5 3395 14134 6
Cheese maze PD Gurobi 0.2 5 2970 12421 6
Cheese maze PD Gurobi 0.3 5 2688 11276 6
Cheese maze PD Gurobi 0.4 5 2673 11224 6
Cheese maze PD Gurobi 0.5 5 1061 4300 6
Cheese maze Sampling 100, f2 0.1 5 1033 4177 5
Cheese maze Sampling 100, f2 0.2 5 657 2697 5
Cheese maze Sampling 100, f2 0.3 5 287 1127 5
Cheese maze Sampling 100, f2 0.4 5 253 1002 4
Cheese maze Sampling 100, f2 0.5 5 217 860 4
Cheese maze Sampling 100, f5 0.1 5 1061 4299 6
Cheese maze Sampling 100, f5 0.2 5 649 2671 5
Cheese maze Sampling 100, f5 0.3 5 287 1132 5
Cheese maze Sampling 100, f5 0.4 5 257 1015 4
Cheese maze Sampling 100, f5 0.5 5 212 842 4
Cheese maze Sampling 1000, f2 0.1 5 55 216 3
Cheese maze Sampling 1000, f2 0.2 5 24 92 3
Cheese maze Sampling 1000, f2 0.3 5 19 69 2
Cheese maze Sampling 1000, f2 0.4 5 14 59 2
Cheese maze Sampling 1000, f2 0.5 5 14 54 2
Cheese maze Sampling 1000, f5 0.1 5 55 216 3
Cheese maze Sampling 1000, f5 0.2 5 24 92 3
Cheese maze Sampling 1000, f5 0.3 5 19 69 2
Cheese maze Sampling 1000, f5 0.4 5 14 59 2
Cheese maze Sampling 1000, f5 0.5 5 14 54 2

Table 7.6: Overview of the results of the experiments on the increased uncertainty versions of
the cheese maze problem.

84

Problem Method Unc. Min. Expl. Found Hor.
Tiger problem PD Charnes-Cooper 0.1 5 1433 5733 6
Tiger problem PD Charnes-Cooper 0.2 5 1686 6744 6
Tiger problem PD Charnes-Cooper 0.3 5 1680 6722 6
Tiger problem PD Charnes-Cooper 0.4 5 1668 6672 6
Tiger problem PD Charnes-Cooper 0.5 5 1688 6752 6
Tiger problem PD Gurobi 0.1 5 1275 5101 5
Tiger problem PD Gurobi 0.2 5 1296 5186 5
Tiger problem PD Gurobi 0.3 5 1225 4901 5
Tiger problem PD Gurobi 0.4 5 1210 4842 5
Tiger problem PD Gurobi 0.5 5 1204 4818 5
Tiger problem Sampling 100, f2 0.1 5 1228 4915 5
Tiger problem Sampling 100, f2 0.2 5 693 2774 5
Tiger problem Sampling 100, f2 0.3 5 499 1998 5
Tiger problem Sampling 100, f2 0.4 5 325 1303 4
Tiger problem Sampling 100, f2 0.5 5 328 1313 4
Tiger problem Sampling 100, f5 0.1 5 1264 5058 5
Tiger problem Sampling 100, f5 0.2 5 685 2742 5
Tiger problem Sampling 100, f5 0.3 5 495 1983 5
Tiger problem Sampling 100, f5 0.4 5 351 1406 5
Tiger problem Sampling 100, f5 0.5 5 324 1297 4
Tiger problem Sampling 1000, f2 0.1 5 143 575 4
Tiger problem Sampling 1000, f2 0.2 5 73 295 3
Tiger problem Sampling 1000, f2 0.3 5 54 218 3
Tiger problem Sampling 1000, f2 0.4 5 44 177 3
Tiger problem Sampling 1000, f2 0.5 5 36 147 3
Tiger problem Sampling 1000, f5 0.1 5 143 573 4
Tiger problem Sampling 1000, f5 0.2 5 72 289 3
Tiger problem Sampling 1000, f5 0.3 5 53 215 3
Tiger problem Sampling 1000, f5 0.4 5 44 178 3
Tiger problem Sampling 1000, f5 0.5 5 36 146 3

Table 7.7: Overview of the results of the experiments on the increased uncertainty versions of
the tiger problem.

85

Problem Method Unc. Min. Expl. Found Hor.
Grid-world robot PD Charnes-Cooper 0.1 5 6199 44107 5
Grid-world robot PD Charnes-Cooper 0.2 5 7659 54459 5
Grid-world robot PD Charnes-Cooper 0.3 5 6836 48646 5
Grid-world robot PD Charnes-Cooper 0.4 5 6139 43686 5
Grid-world robot PD Charnes-Cooper 0.5 5 6052 43049 4
Grid-world robot PD Gurobi 0.1 5 4229 30144 4
Grid-world robot PD Gurobi 0.2 5 4562 32494 4
Grid-world robot PD Gurobi 0.3 5 4175 29744 4
Grid-world robot PD Gurobi 0.4 5 3449 24591 4
Grid-world robot PD Gurobi 0.5 5 3965 28260 4
Grid-world robot Sampling 100, f2 0.1 5 2041 14591 4
Grid-world robot Sampling 100, f2 0.2 5 1306 9387 4
Grid-world robot Sampling 100, f2 0.3 5 994 7137 4
Grid-world robot Sampling 100, f2 0.4 5 823 5932 3
Grid-world robot Sampling 100, f2 0.5 5 613 4419 3
Grid-world robot Sampling 100, f5 0.1 5 2094 14966 4
Grid-world robot Sampling 100, f5 0.2 5 1153 8297 4
Grid-world robot Sampling 100, f5 0.3 5 838 6041 3
Grid-world robot Sampling 100, f5 0.4 5 819 5901 3
Grid-world robot Sampling 100, f5 0.5 5 555 4008 3
Grid-world robot Sampling 1000, f2 0.1 5 236 1713 3
Grid-world robot Sampling 1000, f2 0.2 5 148 1090 3
Grid-world robot Sampling 1000, f2 0.3 5 105 786 2
Grid-world robot Sampling 1000, f2 0.4 5 79 604 2
Grid-world robot Sampling 1000, f2 0.5 5 72 543 2
Grid-world robot Sampling 1000, f5 0.1 5 239 1733 3
Grid-world robot Sampling 1000, f5 0.2 5 149 1095 3
Grid-world robot Sampling 1000, f5 0.3 5 101 761 2
Grid-world robot Sampling 1000, f5 0.4 5 77 582 2
Grid-world robot Sampling 1000, f5 0.5 5 72 543 2

Table 7.8: Overview of the results of the experiments on the increased uncertainty versions of
the grid-world robot problem.

Explored uncertain belief states

As the highlighted rows indicate, the uncertainty increase does not necessarily lead to a slow-
down for the partial decoupling methods. The larger uncertainty intervals might lead to linear
programs that are relatively easier to solve for Gurobi. We do not see this effect in the sampling
methods, but this might be overshadowed by the time required to (pre)generate samples.

Another option is that it is caused by small differences in the computer usage on which the
experiments ran. Although the computer was not occupied with other tasks while running the
experiments, activity when starting the experiments and irregular checks to see whether the

86

code was still running might have caused a difference in available resources. We unintentionally
reran the base version problems for the increased size version comparison and, as can be seen
in Tables 7.9 to 7.11, the number of explored uncertain belief states is higher for most of the
problems. This difference supports our second theory. We highlighted the rows in Tables 7.9
to 7.11 where the rerun resulted in a larger number of explored uncertain belief states.

Belief uncertainty intervals

Comparing the belief uncertainty intervals for the same method on multiple uncertainty inter-
val versions makes little sense, as the intervals are supposed to have different sizes. We can,
however, try to compare the differences in belief uncertainty intervals compared to a sampling
method with spud value 1000. Figures 7.6 to 7.8 show the differences in the belief uncertainty
intervals for the increased uncertainty versions of the three smaller uPOMDP problems.

0 50 100 150 200
Nr. uncertain intervals

0.4

0.2

0.0

0.2

0.4

0.6

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

Cheese Maze: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(a) Uncertainty interval 0.1.

0 20 40 60 80 100 120
Nr. uncertain intervals

0.4

0.2

0.0

0.2

0.4

0.6

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

Cheese Maze: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(b) Uncertainty interval 0.2.

0 20 40 60 80 100
Nr. uncertain intervals

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

Cheese Maze: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(c) Uncertainty interval 0.3.

0 10 20 30 40 50 60 70 80
Nr. uncertain intervals

0.2

0.0

0.2

0.4

0.6

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

Cheese Maze: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(d) Uncertainty interval 0.4.

0 10 20 30 40 50 60 70 80
Nr. uncertain intervals

0.2

0.0

0.2

0.4

0.6

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

Cheese Maze: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(e) Uncertainty interval 0.5.

Figure 7.6: Difference in belief uncertainty intervals compared to sampling methods with spud
value 1000 of the increased uncertainty versions of the cheese maze problem.

87

0 100 200 300 400 500
Nr. uncertain intervals

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

tiger_problem_u1: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(a) Uncertainty interval 0.1.

0 50 100 150 200 250 300
Nr. uncertain intervals

0.2

0.0

0.2

0.4

0.6

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

tiger_problem_u2: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(b) Uncertainty interval 0.2.

0 50 100 150 200
Nr. uncertain intervals

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

tiger_problem_u3: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(c) Uncertainty interval 0.3.

0 25 50 75 100 125 150 175
Nr. uncertain intervals

0.2

0.0

0.2

0.4

0.6

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

tiger_problem_u4: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(d) Uncertainty interval 0.4.

0 20 40 60 80 100 120 140
Nr. uncertain intervals

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

tiger_problem_u5: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(e) Uncertainty interval 0.5.

Figure 7.7: Difference in belief uncertainty intervals compared to sampling methods with spud
value 1000 of the increased uncertainty versions of the tiger problem.

88

0 100 200 300 400 500 600
Nr. uncertain intervals

0.2

0.0

0.2

0.4

0.6

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

grid_world_robot_u1: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(a) Uncertainty interval 0.1.

0 50 100 150 200 250 300 350
Nr. uncertain intervals

0.2

0.0

0.2

0.4

0.6

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

grid_world_robot_u2: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(b) Uncertainty interval 0.2.

0 50 100 150 200 250
Nr. uncertain intervals

0.2

0.0

0.2

0.4

0.6

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

grid_world_robot_u3: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(c) Uncertainty interval 0.3.

0 25 50 75 100 125 150 175 200
Nr. uncertain intervals

0.2

0.0

0.2

0.4

0.6

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

grid_world_robot_u4: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(d) Uncertainty interval 0.4.

0 25 50 75 100 125 150 175
Nr. uncertain intervals

0.2

0.0

0.2

0.4

0.6

Be
lie

f u
nc

er
ta

in
ty

 d
iff

er
en

ce

grid_world_robot_u5: Belief uncertainty difference vs. nr. uncertain intervals
pd_cc_0_f0
pd_gurobi_0_f0
sampling_100_f2
sampling_100_f5
sampling_1000_f2
sampling_1000_f5

(e) Uncertainty interval 0.5.

Figure 7.8: Difference in belief uncertainty intervals compared to sampling methods with spud
value 1000 of the increased uncertainty versions of the grid-world robot problem.

Although we can identify some shifted patterns in the plotted differences of the partial decou-
pling methods of the tiger and grid-world robot problems, it is difficult to explain the effect
of the increased uncertainty on the belief uncertainty intervals in general.

The pattern shift in the tiger problem versions towards greater differences could be at-
tributed to the reset of the belief after the agent opens a door. On the other hand, the pattern
shift in the grid-world robot problem towards smaller differences might be caused by the cor-
rect uncertainty interval becoming so large that there is limited space for over-approximation.

7.4.3 The effect of increased size

Finally, we look at the effect of increased size on the smaller uPOMDP problems. Tables 7.9
to 7.11 summarize the results of the experiments performed on the increased uncertainty
versions of the problems. We grouped the results per method.

89

Problem Method Size Min. Expl. Found Hor.
Cheese maze PD Charnes-Cooper base 5 8276 34628 7
Cheese maze PD Charnes-Cooper s2 5 2883 12777 6
Cheese maze PD Charnes-Cooper s3 5 1393 5939 6
Cheese maze PD Gurobi base 5 3408 14180 6
Cheese maze PD Gurobi s2 5 1099 4657 6
Cheese maze PD Gurobi s3 5 829 3556 5
Cheese maze Sampling 100, f2 base 5 1027 4168 5
Cheese maze Sampling 100, f2 s2 5 251 1028 4
Cheese maze Sampling 100, f2 s3 5 146 591 4
Cheese maze Sampling 100, f5 base 5 1025 4164 5
Cheese maze Sampling 100, f5 s2 5 260 1064 4
Cheese maze Sampling 100, f5 s3 5 150 611 4
Cheese maze Sampling 1000, f2 base 5 55 216 3
Cheese maze Sampling 1000, f2 s2 5 19 69 2
Cheese maze Sampling 1000, f2 s3 5 14 54 2
Cheese maze Sampling 1000, f5 base 5 55 216 3
Cheese maze Sampling 1000, f5 s2 5 19 69 2
Cheese maze Sampling 1000, f5 s3 5 14 54 2

Table 7.9: Overview of the results of the experiments on the increased size versions of the
cheese maze problem.

90

Problem Method Size Min. Expl. Found Hor.
Tiger problem PD Charnes-Cooper base 5 1760 7040 6
Tiger problem PD Charnes-Cooper s2 5 628 3768 4
Tiger problem PD Charnes-Cooper s3 5 271 2175 3
Tiger problem PD Gurobi base 5 1426 5706 6
Tiger problem PD Gurobi s2 5 446 2678 4
Tiger problem PD Gurobi s3 5 231 1852 3
Tiger problem Sampling 100, f2 base 5 1474 5899 6
Tiger problem Sampling 100, f2 s2 5 244 1467 3
Tiger problem Sampling 100, f2 s3 5 114 916 3
Tiger problem Sampling 100, f5 base 5 1436 5747 6
Tiger problem Sampling 100, f5 s2 5 245 1472 3
Tiger problem Sampling 100, f5 s3 5 111 893 3
Tiger problem Sampling 1000, f2 base 5 151 606 4
Tiger problem Sampling 1000, f2 s2 5 24 146 2
Tiger problem Sampling 1000, f2 s3 5 14 117 2
Tiger problem Sampling 1000, f5 base 5 151 607 4
Tiger problem Sampling 1000, f5 s2 5 23 139 2
Tiger problem Sampling 1000, f5 s3 5 14 114 2

Table 7.10: Overview of the results of the experiments on the increased uncertainty size of the
tiger problem.

91

Problem Method Size Min. Expl. Found Hor.
Grid-world robot PD Charnes-Cooper base 5 8003 56948 5
Grid-world robot PD Charnes-Cooper s2 5 2428 19010 4
Grid-world robot PD Charnes-Cooper s3 5 1606 12431 4
Grid-world robot PD Gurobi base 5 5394 38414 4
Grid-world robot PD Gurobi s2 5 1435 11336 4
Grid-world robot PD Gurobi s3 5 1058 8169 4
Grid-world robot Sampling 100, f2 base 5 2156 15413 4
Grid-world robot Sampling 100, f2 s2 5 808 6433 3
Grid-world robot Sampling 100, f2 s3 5 563 4354 3
Grid-world robot Sampling 100, f5 base 5 2261 16128 4
Grid-world robot Sampling 100, f5 s2 5 752 6011 3
Grid-world robot Sampling 100, f5 s3 5 554 4275 3
Grid-world robot Sampling 1000, f2 base 5 241 1751 3
Grid-world robot Sampling 1000, f2 s2 5 78 655 2
Grid-world robot Sampling 1000, f2 s3 5 74 573 2
Grid-world robot Sampling 1000, f5 base 5 241 1747 3
Grid-world robot Sampling 1000, f5 s2 5 78 653 2
Grid-world robot Sampling 1000, f5 s3 5 72 560 2

Table 7.11: Overview of the results of the experiments on the increased size versions of the
grid-world robot problem.

We do not see anything unexpected in the number of explored uncertain belief states. The
factor with which this number decreases varies quite a lot between the different problems
and different increases, but this can be attributed to the ways the problems are extended in
combination with the time limit.

We cannot fairly compare the belief uncertainty intervals of the increased size versions, as the
uncertain belief states now concern different numbers of states.

92

Chapter 8

Discussion

In this chapter, we discuss some flaws of the project. We first discuss some suboptimal choices
made during the implementation and the consequences thereof. Next, we discuss the lack of
guarantees we can give about the quality of the various approximations made.

Implementation

Over the course of the project, our objectives for the implementation changed multiple times
due to changes in the definition of the uncertain belief state and which approximation methods
seemed most promising. Due to this, some choices that made sense in an earlier implementa-
tion turned into flaws in the final implementation. Furthermore, as the initial implementation
was made with only the smaller uPOMDPs in mind, we implemented several parts of the code
in a naive fashion.

One of those naive parts of code is the sample generation, which is a clear bottleneck for
the random sampling approximation methods. Especially when the additional distribution
constraints on an uncertain belief state are tight, our simple implementation results in many
rejected samples and hence requires a lot of additional computation to generate the desired
number of samples. Replacing the sample generation with a proper sampling algorithm, such
as [Kannan and Narayanan, 2012, Chen et al., 2018], would make for a fairer comparison
time-wise with the other approximation methods.

Another thing we implemented rather naively is the way we explore the uncertain belief
states. Although, in an earlier version, we looked for duplicate uncertain belief states to pre-
vent recomputation, we removed this when we added the additional distribution constraints.
Especially in a model that resets after certain choices, such as the tiger problem, recomputing
the successor uncertain belief states of a duplicate state wastes a lot of time.

A final flaw in the implementation is the precision parameter. We introduced this to com-
pare the uncertain belief states to see which are sufficiently close to be considered the same
uncertain belief state. In the current version of the code, which we used for the numerical
experiments, we do not check for duplicates anymore, so this has become superfluous. Fur-
thermore, we could check for duplicates by rounding only for this comparison. However, this
requires either a lot of repeated computation or additional memory to store a rounded copy
of each uncertain belief state.

Due to the precision parameter, we also had to add a lower bound on the computed
uncertainty intervals to ensure graph preservation. Both the precision parameter and the
resulting lower bound cause unintended and unnecessary errors in the model.

93

Approximation errors

As explained in the Introduction, the belief uMDP we defined in this thesis is an over-
approximation of the true set of belief MDPs. On top of this approximation, we approximate
various optimization problems. Furthermore, unintentional error can enter the model via the
use of Gurobi and the precision parameter. We elaborate on the unintentional errors below.

According to Gurobi’s documentation [Gurobi Optimization, LLC, 2023], the MIPgap pa-
rameter is used as the acceptable gap between the upper and lower bounds on the optimal
solution when looking at, among others, non-convex quadratic models. This parameter has
a default value of 0.0001. As mentioned in Section 6.5, Gurobi can compute solutions for
the linear fractional programs by transforming them into quadratically constrained linear pro-
grams. During the implementation, Gurobi could only find solutions for these models with
the non-convex flag set, meaning this gap might have been involved. This could also explain
the tiny differences we found between the computed values in the uncertain belief states of
the two partial decoupling methods.

Regarding the precision parameter, error can enter the model both via the rounding of
computed values and the consequently necessary lower bound on the belief uncertainty in-
tervals. Initially, this error is bounded by the precision parameter, but this quickly increases
because of the successive computations in the belief uMDP.

Apart from the MIPgap, we have no information about the amount of error that seeps
into the model by the various approximations and discrepancies. Due to this, we cannot
give any concrete guarantees about the quality of belief uMDP or finite horizon policies com-
puted on it. By removing the precision parameter, we do know that the finite horizon belief
uMDPs computed with partial decoupling with the Charnes-Cooper transformation is an over-
approximation of the true belief uMDP.

94

Chapter 9

Conclusions

In this thesis, we define a computationally tractable over-approximation of the underlying
belief model of the uncertain POMDP, referred to as the belief uMDP.

We define the uncertain belief state, a convex polytope over the belief in each state, which
over-approximates the true possible belief. Based on this definition, we define the belief uMDP,
following the blueprint of the belief MDP and adjusting it to work with probability intervals.
We add a second step to the uncertain version of the belief update function to deal with
information loss.

Our definition of the belief uMDP gives rise to various optimization problems. We use the
property of independence between transitions from different states, which follows from our
(s,a)-rectangularity assumption, to transform some parts of the optimization problems into
(precomputable) linear programs. Still, we need to deal with various non-convex quadratic
fractional programs, which require approximations to become computationally tractable. We
discuss various ways of approximating the uncertainty intervals, the most promising being
under-approximation via random sampling on the uncertainty set and over-approximations
by partial decoupling of the links between the transition variables in the numerator and
denominator functions. The partial decoupling method can be extended with the Charnes-
Cooper transformation.

We implement finite horizon computation of the belief uMDP with the three most promis-
ing approximation methods for the non-convex quadratic fractional programs: the random
sampling approach and the partial decoupling approach with and without the Charnes-Cooper
transformation. We use the mathematical optimization solver Gurobi to solve all linear (frac-
tional) programs.

We compare the approximation methods based on the number of explored uncertain belief
states within a given time limit and the sizes of the probability intervals of the computed
uncertain belief states. Furthermore, we investigate the effect of increased uncertainty and
increased model size. Most notably, with the partial decoupling approach with the Charnes-
Cooper transformation, we can explore the belief uMDP of a relatively large uPOMDP up to
horizon 17 within one hour.

Future research

There are many interesting future research directions concerning both improvement and ex-
tensions of the current work. We summarize them below:

95

• As explained in the Discussion, the final implementation that we used for the numerical
experiments contains some flaws that should be ironed out. Improving these should
lead to a smaller approximation error, a fairer comparison with the sampling approxi-
mation methods of the non-convex quadratic fractional programs, and a more efficient
exploration strategy.

• Also discussed in the Discussion, another valuable area of improvement is the available
information on the approximation error of the general approximation of the true belief
uMDP, as well as of the various approximations of the non-convex quadratic fractional
programs. Although it might not be possible to establish anything concrete, some time
should be spent exploring this.

• We do not have any formal proofs to support that the belief uMDP we defined in this
thesis over-approximates the true belief uMDP. Although we argue, for each function in
the belief uMDP, how it ensures that all true probabilities are contained, it would be
good if we could support those claims with proofs.

• During this thesis, we chose to use the interval version of uncertainty. To make the belief
uMDP framework more general, it could be interesting to extend the definition to other
forms of uncertainty, such as the point-set uncertainty of [Itoh and Nakamura, 2007].

• We often mentioned the possibility of applying finite horizon uMDP algorithms to the
belief uMDP but have not yet done so in this thesis. Future research in this direction
would allow for performance comparisons with other uPOMDP policy algorithms.

• As mentioned in Section 5.8, the uncertain belief update function has some additional
possible applications. Both lifting POMDP policy computation algorithms that rely on
the belief update function to the uncertain setting [Walraven and Spaan, 2019, Shani
et al., 2013] and robust reinforcement learning for POMDPs [Kaelbling et al., 1996] are
interesting future research directions.

• Testing the belief uMDP on a real-life case study could provide interesting insights into
the other benefits of having the underlying belief model, namely the repeated finite
horizon policy computation without full recomputation and the insight into the effect of
the uncertainty.

96

Bibliography

[Ahmadi et al., 2018] Ahmadi, M., Cubuktepe, M., Jansen, N., and Topcu, U. (2018). Verifi-
cation of uncertain pomdps using barrier certificates. In Allerton, pages 115–122. IEEE.

[Baier and Katoen, 2008] Baier, C. and Katoen, J. (2008). Principles of model checking. MIT
Press.

[Beck and Teboulle, 2010] Beck, A. and Teboulle, M. (2010). On minimizing quadratically
constrained ratio of two quadratic functions. Journal of Convex Analysis, 17(3):789–804.

[Bentobache et al., 2022] Bentobache, M., Telli, M., and Mokhtari, A. (2022). New lp-based
local and global algorithms for continuous and mixed-integer nonconvex quadratic program-
ming. J. Glob. Optim., 82(4):659–689.

[Boyd and Vandenberghe, 2014] Boyd, S. P. and Vandenberghe, L. (2014). Convex
Optimization. Cambridge University Press.

[Chamie and Mostafa, 2018] Chamie, M. E. and Mostafa, H. (2018). Robust action selection
in partially observable markov decision processes with model uncertainty. In CDC, pages
5586–5591. IEEE.

[Charnes and Cooper, 1962] Charnes, A. and Cooper, W. W. (1962). Programming with
linear fractional functionals. Nav. Res. Logist. Q., 9(3-4):181–186.

[Chatterjee et al., 2016] Chatterjee, K., Chmelik, M., Gupta, R., and Kanodia, A. (2016).
Optimal cost almost-sure reachability in pomdps. Artif. Intell., 234:26–48.

[Chen et al., 2018] Chen, Y., Dwivedi, R., Wainwright, M. J., and Yu, B. (2018). Fast MCMC
sampling algorithms on polytopes. J. Mach. Learn. Res., 19:55:1–55:86.

[Chong and Żak, 2013] Chong, E. K. P. and Żak, S. H. (2013). An Introduction to
Optimization. Wiley Series in Discrete Mathematics and Optimization. Wiley, fourth edi-
tion.

[Cubuktepe et al., 2021] Cubuktepe, M., Jansen, N., Junges, S., Marandi, A., Suilen, M., and
Topcu, U. (2021). Robust finite-state controllers for uncertain pomdps. In AAAI, pages
11792–11800. AAAI Press.

[Givan et al., 2000] Givan, R., Leach, S. M., and Dean, T. L. (2000). Bounded-parameter
markov decision processes. Artif. Intell., 122(1-2):71–109.

[Gurobi Optimization, LLC, 2023] Gurobi Optimization, LLC (2023). Gurobi Optimizer Ref-
erence Manual.

97

[Itoh and Nakamura, 2007] Itoh, H. and Nakamura, K. (2007). Partially observable markov
decision processes with imprecise parameters. Artif. Intell., 171(8-9):453–490.

[Iyengar, 2005] Iyengar, G. N. (2005). Robust dynamic programming. Math. Oper. Res.,
30(2):257–280.

[Kaelbling et al., 1998] Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Plan-
ning and acting in partially observable stochastic domains. Artif. Intell., 101(1-2):99–134.

[Kaelbling et al., 1996] Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Rein-
forcement learning: A survey. J. Artif. Intell. Res., 4:237–285.

[Kannan and Narayanan, 2012] Kannan, R. and Narayanan, H. (2012). Random walks on
polytopes and an affine interior point method for linear programming. Mathematics of
Operations Research, 37(1):1–20.

[Kochenderfer, 2015] Kochenderfer, M. J. (2015). Decision Making Under Uncertainty. MIT
Lincoln Laboratory Series. MIT Press.

[Kochenderfer and Wheeler, 2019] Kochenderfer, M. J. and Wheeler, T. A. (2019). Algorithms
for Optimization. MIT Press.

[Kwiatkowska et al., 2011] Kwiatkowska, M., Norman, G., and Parker, D. (2011). PRISM
4.0: Verification of probabilistic real-time systems. In Gopalakrishnan, G. and Qadeer,
S., editors, Proc. 23rd International Conference on Computer Aided Verification (CAV’11),
volume 6806 of LNCS, pages 585–591. Springer.

[Liberzon, 2003] Liberzon, D. (2003). Switching in Systems and Control. Systems & Control:
Foundations & Applications. Birkhäuser.

[Lipp and Boyd, 2016] Lipp, T. and Boyd, S. (2016). Variations and extension of the convex-
concave procedure. Optim. Eng., 17(2):263–287.

[Littman et al., 1995] Littman, M. L., Cassandra, A. R., and Kaelbling, L. P. (1995). Learning
policies for partially observable environments: Scaling up. In ICML, pages 362–370. Morgan
Kaufmann.

[Madani et al., 2003] Madani, O., Hanks, S., and Condon, A. (2003). On the undecidability
of probabilistic planning and related stochastic optimization problems. Artif. Intell., 147(1-
2):5–34.

[McCallum, 1993] McCallum, A. (1993). Overcoming incomplete perception with utile dis-
tinction memory. In ICML, pages 190–196. Morgan Kaufmann.

[Meuleau et al., 1999] Meuleau, N., Kim, K., Kaelbling, L. P., and Cassandra, A. R. (1999).
Solving pomdps by searching the space of finite policies. In UAI, pages 417–426. Morgan
Kaufmann.

[Nguyen et al., 2014] Nguyen, V.-B., Sheu, R.-L., and Xia, Y. (2014). An sdp approach for
solving quadratic fractional programming problems.

[Nilim and Ghaoui, 2005] Nilim, A. and Ghaoui, L. E. (2005). Robust control of markov
decision processes with uncertain transition matrices. Oper. Res., 53(5):780–798.

98

[Osogami, 2015] Osogami, T. (2015). Robust partially observable markov decision process.
In ICML, volume 37 of JMLR Workshop and Conference Proceedings, pages 106–115.
JMLR.org.

[Prajna et al., 2007] Prajna, S., Jadbabaie, A., and Pappas, G. J. (2007). A framework for
worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Autom.
Control., 52(8):1415–1428.

[Puterman, 1994] Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley Series in Probability and Statistics. Wiley.

[Sahni, 1974] Sahni, S. (1974). Computationally related problems. SIAM J. Comput.,
3(4):262–279.

[Shani et al., 2013] Shani, G., Pineau, J., and Kaplow, R. (2013). A survey of point-based
POMDP solvers. Auton. Agents Multi Agent Syst., 27(1):1–51.

[Suilen et al., 2020] Suilen, M., Jansen, N., Cubuktepe, M., and Topcu, U. (2020). Robust
policy synthesis for uncertain pomdps via convex optimization. In IJCAI, pages 4113–4120.
ijcai.org.

[Suilen et al., 2022] Suilen, M., Simão, T. D., Parker, D., and Jansen, N. (2022). Robust
anytime learning of markov decision processes. In NeurIPS.

[Walraven and Spaan, 2019] Walraven, E. and Spaan, M. T. J. (2019). Point-based value
iteration for finite-horizon pomdps. J. Artif. Intell. Res., 65:307–341.

[Wiesemann et al., 2013] Wiesemann, W., Kuhn, D., and Rustem, B. (2013). Robust markov
decision processes. Math. Oper. Res., 38(1):153–183.

[Winkler et al., 2019] Winkler, T., Junges, S., Pérez, G. A., and Katoen, J. (2019). On the
complexity of reachability in parametric markov decision processes. In CONCUR, volume
140 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[Wolff et al., 2012] Wolff, E. M., Topcu, U., and Murray, R. M. (2012). Robust control of
uncertain markov decision processes with temporal logic specifications. In CDC, pages
3372–3379. IEEE.

[Wu and Koutsoukos, 2008] Wu, D. and Koutsoukos, X. D. (2008). Reachability analysis of
uncertain systems using bounded-parameter markov decision processes. Artif. Intell., 172(8-
9):945–954.

[Xu and Zhou, 2021] Xu, Z. and Zhou, J. (2021). A global optimization algorithm for solving
linearly constrained quadratic fractional problems. Mathematics, 9(22).

[Young et al., 2010] Young, S. J., Gasic, M., Keizer, S., Mairesse, F., Schatzmann, J., Thom-
son, B., and Yu, K. (2010). The hidden information state model: A practical framework
for pomdp-based spoken dialogue management. Comput. Speech Lang., 24(2):150–174.

99

Appendix A

Proofs of non-convexity

A.1 Non-convexity of quadratic uncertain transition function

Given optimization variable x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

]
and observation o ∈ Z with

∃si ∈ S : O(si, o) = 1, we proof the following lemma:

Lemma A.1.1:

f(x⃗) =
∑
s′∈S

O(s′, o)
∑
s∈S

xs,s′ys is non-convex

Proof.
We begin by writing the quadratic function in canonical form:

f(x⃗) = 1
2 x⃗

TQx⃗+ b⃗
T
x⃗

As the function has no linear part, b⃗ is a zero vector. Q has the following shape, where
qi = O(si, o). We highlight the non-zero parts.

100

Q =



0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0 q1 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0 q2 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0 qn 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0 0 q1 0 . . . 0

0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0 0 q2 0 . . . 0
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0 0 qn 0 . . . 0
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0 0 0 0 . . . q1

0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0 0 0 0 . . . q2
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0 0 0 0 . . . qn

q1 q2 . . . qn 0 0 . . . 0 . . . 0 0 . . . 0 0 0 0 . . . 0

0 0 . . . 0 q1 q2 . . . qn . . . 0 0 . . . 0 0 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0 . . . q1 q2 . . . qn 0 0 0 . . . 0



n2︷ ︸︸ ︷ n︷ ︸︸ ︷ 

n2


n

As explained in Section 3.3.1 of the Prelimiaries, the Hessian of a quadratic function is its
quadratic part: ∇2f(x⃗) = Q.

Let si ∈ S be a state with O(si, o) = 1. Let r⃗ ∈ Rn2+n be a vector with all zeros except for
elements ri·n+i and rn2+i. Then we get:

r⃗ TQr⃗ = r⃗ T ·



0
...
0

q1 · rn2+i

q2 · rn2+i
...

qn · rn2+i

0
...
0

qi · ri·n+i

0
...
0



 i · n

 (n− i− 1) · n+ i

 n− i− 1

101

= ri·n+i · qi · rn2+i + rn2+i · qi · ri·n+i

= 2 ·O(si, o) · ri·n+i · rn2+i

= 2 · ri·n+i · rn2+i

Now, if we set ri·n+i = 1 and rn2+i = −1, we get:

r⃗ TQr⃗ = −2

< 0

And if we set ri·n+i = 1 and rn2+i = 1, we get:

r⃗ TQr⃗ = 2

> 0

Hence Q is indefinite and therefore f(x⃗) is non-convex

A.2 Non-convexity of quadratic fractional belief uncertainty in-
terval function

Given optimization variable x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

]
, state sj ∈ S with ∃s ∈ S :

xs,sjys ̸= 0, and observation o ∈ Z with O(sj , o) = 1 and ∃s′ ∈ S \ {sj} : O(s′, o) = 1, we
proof the following lemma. Note that the functions we exclude with the additional conditions
always result in the constant values 0 or 1 and are therefore convex and concave.

Lemma A.2.1:

f(x⃗) =
O(sj , o)

∑
s∈S xs,sjys∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys
is non-convex

Proof.
We being by looking at the Hessian of f :

∇2f(x⃗) =



∂2f

∂x21,1
(x⃗) . . .

∂2f

∂x1,1∂xn,n
(x⃗)

∂2f

∂x1,1∂y1
(x⃗) . . .

∂2f

∂x1,1∂yn
(x⃗)

...
. . .

...
...

. . .
...

∂2f

∂xn,n∂x1,1
(x⃗) . . .

∂2f

∂x2n,n
(x⃗)

∂2f

∂xn,n∂y1
(x⃗) . . .

∂2f

∂xn,n∂yn
(x⃗)

∂2f

∂y1
(x⃗) . . .

∂2f

∂y1∂xn,n
(x⃗)

∂2f

∂y21
(x⃗) . . .

∂2f

∂y1∂yn
(x⃗)

...
. . .

...
...

. . .
...

∂2f

∂yn∂x1,1
(x⃗) . . .

∂2f

∂yn∂xn,n
(x⃗)

∂2f

∂yn∂y1
(x⃗) . . .

∂2f

∂y2n
(x⃗)


102

This square matrix is in general not symmetric. As mentioned in Section 3.3, we can rewrite
any non-symmetric square matrix to its symmetric part without changing the outcome. How-
ever, as we only need the values on the diagonal for this proof, we shall omit this step.

We get two different types of values on the first n2 elements of the diagonal depending on
whether the second parameter of the x variables is state sj or not. We get for all states si ∈ S:

∂f

∂xsi,sj
=

(O(sj , o)
∑

s∈S xs,sjys)
′(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

−
(O(sj , o)

∑
s∈S xs,sjys)(

∑
s′∈S O(s′, o)

∑
s∈S xs,s′ys)

′

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

=
(O(sj , o)ysi)(

∑
s′∈S O(s′, o)

∑
s∈S xs,s′ys)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2
−

(O(sj , o)
∑

s∈S xs,sjys)(O(sj , o)ysi)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

=
O(sj , o)ysi∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys
−

(O(sj , o)
∑

s∈S xs,sjys)(O(sj , o)ysi)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

=
O(sj , o)ysi∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys
−

O(sj , o)
2ysi

∑
s∈S xs,sjys

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

∂2f

∂x2si,sj
=

(O(sj , o)ysi)
′(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2
−

(O(sj , o)ysi)(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)
′

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

−
(O(sj , o)

2ysi
∑

s∈S xs,sjys)
′(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)
2

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)4

+
(O(sj , o)

2ysi
∑

s∈S xs,sjys)((
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)
2)′

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)4

=
0 · (

∑
s′∈S O(s′, o)

∑
s∈S xs,s′ys)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2
− (O(sj , o)ysi)(O(sj , o)ysi)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

− (O(sj , o)
2ysiysi)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

+
(O(sj , o)

2ysi
∑

s∈S xs,sjys) · 2 · (
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys) · (O(sj , o)ysi)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)4

=
−2 ·O(sj , o)

2y2si
(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2
+

2 ·O(sj , o)
3y2si

∑
s∈S xs,sjys

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)3

=
−2 ·O(sj , o)

2y2si · (
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys) + 2 ·O(sj , o)
3y2si

∑
s∈S xs,sjys

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)3

=
2 ·O(sj , o)

2y2si · (O(sj , o)
∑

s∈S xs,sjys −
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)3

=
−2 ·O(sj , o)

2y2si ·
∑

s′∈S\{sj}O(s′, o)
∑

s∈S xs,s′ys

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)3

103

Since all variables in x⃗ can only take probability values and uncertain observation function O
returns either 0 or 1, we now know:

∂2f

∂x2si,sj
≤ 0

Furthermore, if si is a state for which xsi,sjysi ̸= 0, we know:

∂2f

∂x2si,sj
< 0

Next we look at the diagonal elements with a different second parameter. We get for all states
si ∈ S and sk ∈ S \ {sj}:

∂f

∂xsi,sk
=

(O(sj , o)
∑

s∈S xs,sjys)
′(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

−
(O(sj , o)

∑
s∈S xs,sjys)(

∑
s′∈S O(s′, o)

∑
s∈S xs,s′ys)

′

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

=
0 · (

∑
s′∈S O(s′, o)

∑
s∈S xs,s′ys)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2
−

(O(sj , o)
∑

s∈S ys)(O(sk, o)xsi,skysi)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

=
−(O(sj , o)

∑
s∈S xs,sjys)(O(sk, o)ysi)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

∂2f

∂x2si,sk
=

(−(O(sj , o)
∑

s∈S xs,sjys)(O(sk, o)ysi))
′(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)
2

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)4

+
(O(sj , o)

∑
s∈S xs,sjys)(O(sk, o)ysi)((

∑
s′∈S O(s′, o)

∑
s∈S xs,s′ys)

2)′

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)4

=
0

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

+
(O(sj , o)

∑
s∈S xs,sjys)(O(sk, o)ysi) · 2 · (

∑
s′∈S O(s′, o)

∑
s∈S xs,s′ys) · (O(sk, o)ysi)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)4

=
2 ·O(sk, o)

2y2si ·O(sj , o)
∑

s∈S xs,sjys

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)3

Since all variables in x⃗ can only take probability values and uncertain observation function O
returns either 0 or 1, we now know:

∂2f

∂x2si,sk
≥ 0

Furthermore, if si is a state for which xsi,sjysi ̸= 0 and sk is a state for which O(sk, o) = 1,
we know:

∂2f

∂x2si,sk
> 0

104

Let r⃗ ∈ Rn2+n be a vector with all zeros except for element ri·n+j = 1, and let t⃗ ∈ Rn2+n be
a vector with all zeros except for element ti·n+k = 1. Then we get:

r⃗ T (∇2f(x⃗))r⃗ < 0

t⃗
T
(∇2f(x⃗))⃗t > 0

Hence ∇2f(x⃗) is indefinite and therefore f(x⃗) is non-convex

A.3 Non-convexity of quadratic fractional belief contribution
function

Given optimization variable x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

]
, states si, sj ∈ S with xsi,sjysi ̸=

0 and ∃s ∈ S \ {si} : xs,sjys ̸= 0, and observation o ∈ Z with O(sj , o) = 1, we proof the
following lemma. Note that the functions we exclude with the additional conditions always
result in the constant values 0 or 1 and are therefore convex and concave.

Lemma A.3.1:

f(x⃗) =
O(sj , o)xsi,sjysi

O(sj , o)
∑

s∈S xs,sjys
is non-convex

Proof.
We being by looking at the Hessian of f :

∇2f(x⃗) =



∂2f

∂x21,1
(x⃗) . . .

∂2f

∂x1,1∂xn,n
(x⃗)

∂2f

∂x1,1∂y1
(x⃗) . . .

∂2f

∂x1,1∂yn
(x⃗)

...
. . .

...
...

. . .
...

∂2f

∂xn,n∂x1,1
(x⃗) . . .

∂2f

∂x2n,n
(x⃗)

∂2f

∂xn,n∂y1
(x⃗) . . .

∂2f

∂xn,n∂yn
(x⃗)

∂2f

∂y1
(x⃗) . . .

∂2f

∂y1∂xn,n
(x⃗)

∂2f

∂y21
(x⃗) . . .

∂2f

∂y1∂yn
(x⃗)

...
. . .

...
...

. . .
...

∂2f

∂yn∂x1,1
(x⃗) . . .

∂2f

∂yn∂xn,n
(x⃗)

∂2f

∂yn∂y1
(x⃗) . . .

∂2f

∂y2n
(x⃗)


This square matrix is in general not symmetric. As mentioned in Section 3.3, we can rewrite
any non-symmetric square matrix to its symmetric part without changing the outcome. How-
ever, as we only need the values on the diagonal for this proof, we shall omit this step.

105

We get two different types of values on the first n2 elements of the diagonal depending on
whether the first parameter of the x variables is states si or not:

∂f

∂xsi,sj
=

(O(sj , o)xsi,sjysi)
′(O(sj , o)

∑
s∈S xs,sjys)− (O(sj , o)xsi,sjysi)(O(sj , o)

∑
s∈S xs,sjys)

′

(O(sj , o)
∑

s∈S xs,sjys)
2

=
(O(sj , o)ysi)(O(sj , o)

∑
s∈S xs,sjys)− (O(sj , o)xsi,sjysi)(O(sj , o)ysi)

(O(sj , o)
∑

s∈S xs,sjys)
2

=
O(sj , o)

2ysi · (
∑

s∈S\{si} xs,sjys)

(O(sj , o)
∑

s∈S xs,sjys)
2

∂2f

∂x2si,sj
=

(O(sj , o)
2ysi · (

∑
s∈S\{si} xs,sjys))

′(O(sj , o)
∑

s∈S xs,sjys)
2

(O(sj , o)
∑

s∈S xs,sjys)
4

−
(O(sj , o)

2ysi · (
∑

s∈S\{si} xs,sjys))((O(sj , o)
∑

s∈S xs,sjys)
2)′

(O(sj , o)
∑

s∈S xs,sjys)
4

=
0

(O(sj , o)
∑

s∈S xs,sjys)
2

−
(O(sj , o)

2ysi · (
∑

s∈S\{si} xs,sjys)) · 2 · (O(sj , o)
∑

s∈S xs,sjys) · (O(sj , o)ysi)

(O(sj , o)
∑

s∈S xs,sjys)
4

=
−2 ·O(sj , o)

3y2si · (
∑

s∈S\{si} xs,sjys))

(O(sj , o)
∑

s∈S xs,sjys)
3

Since all variables in x⃗ can only take probability values and O(sj , o) = 1, we now know:

∂2f

∂x2si,sj
≤ 0

Furthermore, since we assumed ∃s ∈ S \ {si} : xs,sjys ̸= 0, we know:

∂2f

∂x2si,sj
< 0

Next we look at the diagonal elements with a different first parameter. We get for all states
sk ∈ S \ {si}:

∂f

∂xsk,sj
=

(O(sj , o)xsi,sjysi)
′(O(sj , o)

∑
s∈S xs,sjys)− (O(sj , o)xsi,sjysi)(O(sj , o)

∑
s∈S xs,sjys)

′

(O(sj , o)
∑

s∈S xs,sjys)
2

=
0 · (O(sj , o)

∑
s∈S xs,sjys)− (O(sj , o)xsi,sjysi)(O(sj , o)ysk)

(O(sj , o)
∑

s∈S xs,sjys)
2

=
−(O(sj , o)xsi,sjysi)(O(sj , o)ysk)

(O(sj , o)
∑

s∈S xs,sjys)
2

106

∂2f

∂x2sk,sj
=

(−(O(sj , o)xsi,sjysi)(O(sj , o)ysk))
′(O(sj , o)

∑
s∈S xs,sjys)

2

(O(sj , o)
∑

s∈S xs,sjys)
4

+
(O(sj , o)xsi,sjysi)(O(sj , o)ysk)((O(sj , o)

∑
s∈S xs,sjys)

2)′

(O(sj , o)
∑

s∈S xs,sjys)
4

=
0

(O(sj , o)
∑

s∈S xs,sjys)
2

+
(O(sj , o)xsi,sjysi)(O(sj , o)ysk) · 2 · (O(sj , o)

∑
s∈S xs,sjys) · (O(sj , o)ysk)

(O(sj , o)
∑

s∈S xs,sjys)
4

=
2 ·O(sj , o)xsi,sjysiO(sj , o)

2y2sk
(O(sj , o)

∑
s∈S xs,sjys)

3

Since all variables in x⃗ can only take probability values and O(sj , o) = 1, we now know:

∂2f

∂x2sk,sj
≥ 0

Furthermore, if sk is a state for which xsk,sjysk ̸= 0, we know:

∂2f

∂x2sk,sj
> 0

Let r⃗ ∈ Rn2+n be a vector with all zeros except for element ri·n+j = 1, and let t⃗ ∈ Rn2+n be
a vector with all zeros except for element tk·n+j = 1. Then we get:

r⃗ T (∇2f(x⃗))r⃗ < 0

t⃗
T
(∇2f(x⃗))⃗t > 0

Hence ∇2f(x⃗) is indefinite and therefore f(x⃗) is non-convex

A.4 Non-convexity of quadratic fractional belief normalization
function

Given optimization variable x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

]
, state si ∈ S, and observation

o ∈ Z with ∃s′ ∈ S : O(s′, o)xsi,s′ysi ̸= 0 and ∃s ∈ S \ {si}, ∃s′ ∈ S : O(s′, o)xs,s′ys ̸= 0, we
proof the following lemma. Note that the functions we exclude with the additional conditions
always result in the constant values 0 or 1 and are therefore convex and concave.

Lemma A.4.1:

f(x⃗) =

∑
s′∈S O(s′, o)xsi,s′ysi∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys
is non-convex

107

Proof.
We being by looking at the Hessian of f :

∇2f(x⃗) =



∂2f

∂x21,1
(x⃗) . . .

∂2f

∂x1,1∂xn,n
(x⃗)

∂2f

∂x1,1∂y1
(x⃗) . . .

∂2f

∂x1,1∂yn
(x⃗)

...
. . .

...
...

. . .
...

∂2f

∂xn,n∂x1,1
(x⃗) . . .

∂2f

∂x2n,n
(x⃗)

∂2f

∂xn,n∂y1
(x⃗) . . .

∂2f

∂xn,n∂yn
(x⃗)

∂2f

∂y1
(x⃗) . . .

∂2f

∂y1∂xn,n
(x⃗)

∂2f

∂y21
(x⃗) . . .

∂2f

∂y1∂yn
(x⃗)

...
. . .

...
...

. . .
...

∂2f

∂yn∂x1,1
(x⃗) . . .

∂2f

∂yn∂xn,n
(x⃗)

∂2f

∂yn∂y1
(x⃗) . . .

∂2f

∂y2n
(x⃗)


This square matrix is in general not symmetric. As mentioned in Section 3.3, we can rewrite
any non-symmetric square matrix to its symmetric part without changing the outcome. How-
ever, as we only need the values on the diagonal for this proof, we shall omit this step.

We get two different types of values on the first n2 elements of the diagonal depending on
whether the first parameter of the x variables is state si or not. We get for all states sj ∈ S:

∂f

∂xsi,sj
=

(
∑

s′∈S O(s′, o)xsi,s′ysi)
′(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

−
(
∑

s′∈S O(s′, o)xsi,s′ysi)(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)
′

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

=
(O(sj , o)ysi)(

∑
s′∈S O(s′, o)

∑
s∈S xs,s′ys)− (

∑
s′∈S O(s′, o)xsi,s′ysi) ·O(sj , o)ysi

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

=
(O(sj , o)ysi)(

∑
s′∈S O(s′, o)

∑
s∈S\{si} xs,s′ys)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

∂2f

∂x2si,sj
=

((O(sj , o)ysi)(
∑

s′∈S O(s′, o)
∑

s∈S\{si} xs,s′ys))
′(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)
2

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)4

−
(O(sj , o)ysi)(

∑
s′∈S O(s′, o)

∑
s∈S\{si} xs,s′ys)((

∑
s′∈S O(s′, o)

∑
s∈S xs,s′ys)

2)′

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)4

=
0

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

−
(O(sj , o)ysi)(

∑
s′∈S O(s′, o)

∑
s∈S\{si} xs,s′ys) · 2 · (

∑
s′∈S O(s′, o)

∑
s∈S xs,s′ys)(O(sj , o)ysi)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)4

=
−2 ·O(sj , o)

2y2si · (
∑

s′∈S O(s′, o)
∑

s∈S\{si} xs,s′ys)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)3

108

Since all variables in x⃗ can only take probability values and uncertain observation function O
returns either 0 or 1, we now know:

∂2f

∂x2si,sj
≤ 0

Furthermore, if sj is a state for which O(sj , o)xsi,sjysi ̸= 0, so O(sj , o) = 1, and since we
assumed ∃s ∈ S \ {si},∃s′ ∈ S : O(s′, o)xs,s′ys ̸= 0, we know:

∂2f

∂x2si,sj
< 0

Next we look at the diagonal elements with a different first parameter. We get for all states
sk ∈ S \ {si} and sj ∈ S:

∂f

∂xsk,sj
=

(
∑

s′∈S O(s′, o)xsi,s′ysi)
′(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

−
(
∑

s′∈S O(s′, o)xsi,s′ysi)(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)
′

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

=
0 · (

∑
s′∈S O(s′, o)

∑
s∈S xs,s′ys)− (

∑
s′∈S O(s′, o)xsi,s′ysi)(O(sj , o)ysk)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

=
−(

∑
s′∈S O(s′, o)xsi,s′ysi)(O(sj , o)ysk)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

∂2f

∂x2sk,sj
=

(−(
∑

s′∈S O(s′, o)xsi,s′ysi)(O(sj , o)ysk))
′(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)
2

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)4

+
(
∑

s′∈S O(s′, o)xsi,s′ysi)(O(sj , o)ysk)((
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)
2)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)4

=
0

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)2

+
(
∑

s′∈S O(s′, o)xsi,s′ysi)(O(sj , o)ysk) · 2 · (
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)(O(sj , o)ysk)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)4

=
2 ·O(sj , o)

2y2sk · (
∑

s′∈S O(s′, o)xsi,s′ysi)

(
∑

s′∈S O(s′, o)
∑

s∈S xs,s′ys)3

Since all variables in x⃗ can only take probability values and uncertain observation function O
returns either 0 or 1, we now know:

∂2f

∂x2sk,sj
≥ 0

109

Furthermore, if sj is a state for which O(sj , o)xsi,sjysi ̸= 0, so O(sj , o) = 1, and sk is a state
for which ∃s′ ∈ S : O(s′, o)xsk,s′ysk ̸= 0, so ysk ̸= 0, we know:

∂2f

∂x2sk,sj
> 0

Let r⃗ ∈ Rn2+n be a vector with all zeros except for element ri·n+j = 1, and let t⃗ ∈ Rn2+n be
a vector with all zeros except for element tk·n+j = 1. Then we get:

r⃗ T (∇2f(x⃗))r⃗ < 0

t⃗
T
(∇2f(x⃗))⃗t > 0

Hence ∇2f(x⃗) is indefinite and therefore f(x⃗) is non-convex

A.5 Non-convexity of quadratic belief uncertainty interval sub-
functions

A.5.1 Numerator

Given optimization variable x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

]
, state si ∈ S and observation

o ∈ Z with O(si, o) = 1, we proof the following lemma:

Lemma A.5.1:

f(x⃗) = O(si, o)
∑
s∈S

xs,siys is non-convex

Proof.
We begin by writing the quadratic function in canonical form:

f(x⃗) = 1
2 x⃗

TQx⃗+ b⃗
T
x⃗

As the function has no linear part, b⃗ is a zero vector. Q has the following shape, where
q = O(si, o). We highlight the non-zero parts.

110

Q =



0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

. . .
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 0 . . . 0 0 0 . . . 0

0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 0 . . . 0 q 0 . . . 0

0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

. . .
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

. . .
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

. . .
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 0 . . . 0 0 0 . . . 0

0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 0 . . . 0 0 0 . . . q

0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

. . .
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 0 . . . 0 0 0 . . . 0

0 . . . 0 q 0 . . . 0 . . . 0 . . . 0 0 0 . . . 0 0 0 . . . 0

0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

. . .
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 q 0 . . . 0 0 0 . . . 0



i︷ ︸︸ ︷ n− i− 1︷ ︸︸ ︷ i︷ ︸︸ ︷ n− i− 1︷ ︸︸ ︷
n2︷ ︸︸ ︷ n︷ ︸︸ ︷

 i

 n− i− 1

 i

 n− i− 1



n2


n

As explained in Section 3.3.1 of the Prelimiaries, the Hessian of a quadratic function is its
quadratic part: ∇2f(x⃗) = Q.

Let r⃗ ∈ Rn2+n be a vector with all zeros except for elements ri·n+i and rn2+i. Then we get:

r⃗ TQr⃗ = r⃗ T ·



0
...
0

q · rn2+i

0
...
0

q · ri·n+i

0
...
0



 i · n+ i

 (n− i− 1) + (n− i− 1) · n+ i

 n− i− 1

= ri·n+i · q · rn2+i + rn2+i · q · ri·n+i

= 2 ·O(si, o) · ri·n+i · rn2+i

= 2 · ri·n+i · rn2+i

111

Now, if we set ri·n+i = 1 and rn2+i = −1, we get:

r⃗ TQr⃗ = −2

< 0

And if we set ri·n+i = 1 and rn2+i = 1, we get:

r⃗ TQr⃗ = 2

> 0

Hence Q is indefinite and therefore f(x⃗) is non-convex

A.5.2 Denominator

The denominator sub-function of the belief uncertainty interval function is the same as the
uncertain transition function. We proof the non-convexity of this function in Appendix A.1.

A.6 Non-convexity of quadratic belief contribution sub-functions

A.6.1 Numerator

Given optimization variable x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

]
, states si, sj ∈ S and observa-

tion o ∈ Z with O(sj , o) = 1, we proof the following lemma:

Lemma A.6.1:

f(x⃗) = O(sj , o)xsi,sjysi is non-convex

Proof.
We begin by writing the quadratic function in canonical form:

f(x⃗) = 1
2 x⃗

TQx⃗+ b⃗
T
x⃗

As the function has no linear part, b⃗ is a zero vector. Q has the following shape, where
q = O(si, o). We highlight the non-zero parts.

112

Q =



0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

...
. . .

...
...

...
. . .

...
0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0

0 . . . 0 0 0 . . . 0 0 . . . 0 q 0 . . . 0

0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

...
. . .

...
...

...
. . .

...
0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0

0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

...
. . .

...
...

...
. . .

...
0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0

0 . . . 0 q 0 . . . 0 0 . . . 0 0 0 . . . 0

0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

...
. . .

...
...

...
. . .

...
0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0



i · n+ j︷ ︸︸ ︷ (n−j−1) +
(n−i−1)·n︷ ︸︸ ︷ i︷ ︸︸ ︷ n− i− 1︷ ︸︸ ︷

n2︷ ︸︸ ︷ n︷ ︸︸ ︷
 i · n+ j

 (n−j−1) +
(n−i−1)·n

 i

 n− i− 1


n2


n

As explained in Section 3.3.1 of the Prelimiaries, the Hessian of a quadratic function is its
quadratic part: ∇2f(x⃗) = Q.

Let r⃗ ∈ Rn2+n be a vector with all zeros except for elements ri·n+j and rn2+i. Then we get:

r⃗ TQr⃗ = r⃗ T ·



0
...
0

q · rn2+i

0
...
0

q · ri·n+j

0
...
0



 i · n+ j

 (n− j − 1) + (n− i− 1) · n+ i

 n− i− 1

= ri·n+j · q · rn2+i + rn2+i · q · ri·n+j

= 2 ·O(sj , o) · ri·n+j · rn2+i

= 2 · ri·n+j · rn2+i

Now, if we set ri·n+j = 1 and rn2+i = −1, we get:

r⃗ TQr⃗ = −2

< 0

113

And if we set ri·n+j = 1 and rn2+i = 1, we get:

r⃗ TQr⃗ = 2

> 0

Hence Q is indefinite and therefore f(x⃗) is non-convex

A.6.2 Denominator

The denominator sub-function of the belief contribution function is the same as the numerator
sub-function of the belief uncertainty interval function. We proof the non-convexity of this
function in Appendix A.5.

A.7 Non-convexity of quadratic belief normalization sub-functions

A.7.1 Numerator

Given optimization variable x⃗ =
[
x1,1 . . . xn,n y1 . . . yn

]
, state si ∈ S and observation

o ∈ Z with ∃j ∈ [n] : O(sj , o) = 1, we proof the following lemma:

Lemma A.7.1:

f(x⃗) =
∑
s′∈S

O(s′, o)xsi,s′ysi is non-convex

Proof.
We begin by writing the quadratic function in canonical form:

f(x⃗) = 1
2 x⃗

TQx⃗+ b⃗
T
x⃗

As the function has no linear part, b⃗ is a zero vector. Q has the following shape, where
qj = O(sj , o). We highlight the non-zero parts.

114

Q =



0 . . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

...
. . .

...
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0 0 0 . . . 0

0 . . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0 q1 0 . . . 0

0 . . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0 q2 0 . . . 0
...

. . .
...

...
...

. . .
...

...
. . .

...
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0 qn 0 . . . 0

0 . . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

...
. . .

...
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0 0 0 . . . 0

0 . . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

...
. . .

...
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0 0 0 . . . 0

0 . . . 0 q1 q2 . . . qn 0 . . . 0 0 . . . 0 0 0 . . . 0

0 . . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

...
. . .

...
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0 0 0 . . . 0



i · n︷ ︸︸ ︷ (n−i−1)·n︷ ︸︸ ︷ i︷ ︸︸ ︷ n− i− 1︷ ︸︸ ︷
n2︷ ︸︸ ︷ n︷ ︸︸ ︷

 i · n

 (n− i− 1) · n

 i

 n− i− 1



n2


n

As explained in Section 3.3.1 of the Prelimiaries, the Hessian of a quadratic function is its
quadratic part: ∇2f(x⃗) = Q.

Let sj ∈ S be a state with O(sj , o) = 1. Let r⃗ ∈ Rn2+n be a vector with all zeros except for
elements ri·n+j and rn2+i. Then we get:

r⃗ TQr⃗ = r⃗ T ·



0
...
0

q1 · rn2+i

q2 · rn2+i
...

qn · rn2+i

0
...
0

qi · ri·n+j

0
...
0



 i · n

 (n− i− 1) · n+ i

 n− i− 1

= ri·n+j · qj · rn2+i + rn2+i · q · ri·n+j

115

= 2 ·O(sj , o) · ri·n+j · rn2+i

= 2 · ri·n+j · rn2+i

Now, if we set ri·n+j = 1 and rn2+i = −1, we get:

r⃗ TQr⃗ = −2

< 0

And if we set ri·n+j = 1 and rn2+i = 1, we get:

r⃗ TQr⃗ = 2

> 0

Hence Q is indefinite and therefore f(x⃗) is non-convex

A.7.2 Denominator

The denominator sub-function of the belief normalization function is the same as the uncertain
transition function. We proof the non-convexity of this function in Appendix A.1.

116

Appendix B

Problem data

In this appendix, we give the concrete data of the base versions of the three uPOMDPs as
described in Section 7.2.

B.1 Cheese maze

S = {s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13}
A = {North, East, South, West, Nothing}
Z = {NW, NS, N, NE, EW, ESW, C}

R(s, a) =

1 if s = s13 and a = Nothing

0 otherwise

O(s) =



NW if s = s0

NS if s ∈ {s1, s3}

N if s = s2

NE if s = s4

EW if s ∈ {s5, s6, s7, s8, s9, s10}

ESW if s ∈ {s11, s12}

C if s = s13

We give the uncertain state transition function P as a transition matrix per action. We
abbreviate the uncertainty intervals as follows:

[0, 0] 7→ -
[0.85, 0.95] 7→ suc
[0.05, 0.15] 7→ fail

[1, 1] 7→ cer

117

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

s0 - - - - - - - - - - - - - -
s1 - - - - - - - - - - - - - -
s2 - - - - - - - - - - - - - -
s3 - - - - - - - - - - - - - -
s4 - - - - - - - - - - - - - -
s5 suc - - - - fail - - - - - - - -
s6 - - suc - - - fail - - - - - - -
s7 - - - - suc - - fail - - - - - -
s8 - - - suc - - fail - - - - - - -
s9 - - - - - - - suc - fail - - - -
s10 - - - - - suc - - - fail - - - -
s11 - - - - - - - - suc - fail - - -
s12 - - - - - - - - suc - - fail - -
s13 - - - - - - - - - - - - - -

Table B.1: Transition matrix North.

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

s0 fail suc - - - - - - - - - - - -
s1 - fail suc - - - - - - - - - - -
s2 - - fail suc - - - - - - - - - -
s3 - - - fail suc - - - - - - - - -
s4 - - - - - - - - - - - - - -
s5 - - - - - - - - - - - - - -
s6 - - - - - - - - - - - - - -
s7 - - - - - - - - - - - - - -
s8 - - - - - - - - - - - - - -
s9 - - - - - - - - - - - - - -
s10 - - - - - - - - - - - - - -
s11 - - - - - - - - - - - - - -
s12 - - - - - - - - - - - - - -
s13 - - - - - - - - - - - - - -

Table B.2: Transition matrix East.

118

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

s0 fail - - - - suc - - - - - - - -
s1 - - - - - - - - - - - - - -
s2 - - fail - - - suc - - - - - - -
s3 - - - - - - - - - - - - - -
s4 - - - - fail - - suc - - - - - -
s5 - - - - - fail - - suc - - - - -
s6 - - - - - - fail - - - suc - - -
s7 - - - - - - - fail - suc - - - -
s8 - - - - - - - - fail - - suc - -
s9 - - - - - - - - - fail - - suc -
s10 - - - - - - - - - - fail - - suc
s11 - - - - - - - - - - - - - -
s12 - - - - - - - - - - - - - -
s13 - - - - - - - - - - - - - -

Table B.3: Transition matrix South.

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

s0 - - - - - - - - - - - - - -
s1 suc fail - - - - - - - - - - - -
s2 - suc fail - - - - - - - - - - -
s3 - - suc fail - - - - - - - - - -
s4 - - - suc fail - - - - - - - - -
s5 - - - - - - - - - - - - - -
s6 - - - - - - - - - - - - - -
s7 - - - - - - - - - - - - - -
s8 - - - - - - - - - - - - - -
s9 - - - - - - - - - - - - - -
s10 - - - - - - - - - - - - - -
s11 - - - - - - - - - - - - - -
s12 - - - - - - - - - - - - - -
s13 - - - - - - - - - - - - - -

Table B.4: Transition matrix West.

119

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

s0 - - - - - - - - - - - - - -
s1 - - - - - - - - - - - - - -
s2 - - - - - - - - - - - - - -
s3 - - - - - - - - - - - - - -
s4 - - - - - - - - - - - - - -
s5 - - - - - - - - - - - - - -
s6 - - - - - - - - - - - - - -
s7 - - - - - - - - - - - - - -
s8 - - - - - - - - - - - - - -
s9 - - - - - - - - - - - - - -
s10 - - - - - - - - - - - - - -
s11 - - - - - - - - - - - - - -
s12 - - - - - - - - - - - - - -
s13 - - - - - - - - - - - - - cer

Table B.5: Transition matrix Nothing.

Initial belief:

b0: {s8 7→ [0.8, 0.8], s9 7→ [0.1, 0.1], s10 7→ [0.1, 0.1]}

B.2 Tiger problem

S = {LoN, RoN, LoL, RoL, LoR, RoR}
A = {Left, Right, Listen}
Z = {Nothing, TigerLeft, TigerRight}

R(s, a) =



10 if s ∈ {LoN, LoL, LoR} and a = Left

10 if s ∈ {RoN, RoL, RoR} and a = Right

−100 if s ∈ {LoN, LoL, LoR} and a = Right

−100 if s ∈ {RoN, RoL, RoR} and a = Left

−1 if a = Listen

O(s) =


Nothing if s ∈ {LoN, RoN}

TigerLeft if s ∈ {LoL, RoL}

TigerRight if s ∈ {LoR, RoR}

120

We give the uncertain state transition function P as a transition matrix per action. We
abbreviate the uncertainty intervals as follows:

[0, 0] 7→ -
[0.8, 0.9] 7→ suc
[0.1, 0.2] 7→ fail
[0.5, 0.5] 7→ res

LoN RoN LoL RoL LoR RoR
LoN res res - - - -
RoN res res - - - -
LoL res res - - - -
RoL res res - - - -
LoR res res - - - -
RoR res res - - - -

Table B.6: Transition matrix Left.

LoN RoN LoL RoL LoR RoR
LoN res res - - - -
RoN res res - - - -
LoL res res - - - -
RoL res res - - - -
LoR res res - - - -
RoR res res - - - -

Table B.7: Transition matrix right.

LoN RoN LoL RoL LoR RoR
LoN - - suc - fail -
RoN - - - fail - suc
LoL - - suc - fail -
RoL - - - fail - suc
LoR - - suc - fail -
RoR - - - fail - suc

Table B.8: Transition matrix Listen.

Initial belief:
b0: {LoN 7→ [0.5, 0.5],RoN 7→ [0.5, 0.5]}

121

B.3 Grid-world robot

S = {s0, s1, s2, s3, s4, s5, s6, s7, s8}
A = {North, East, South, West, Nothing}
Z = {Corner, Wall, Free, Goal}

R(s, a) =

1 if s = s8 and a = Nothing

0 otherwise

O(s) =



Corner if s ∈ {s0, s2, s6}

Wall if s ∈ {s1, s3, s5, s7}

Free if s = s5

Goal if s = s8

We give the uncertain state transition function P as a transition matrix per action. We
abbreviate the uncertainty intervals as follows:

[0, 0] 7→ -
[0.85, 0.95] 7→ suc1
[0.75, 0.85] 7→ suc2
[0.05, 0.15] 7→ dev

[1, 1] 7→ cer

s0 s1 s2 s3 s4 s5 s6 s7 s8

s0 cer - - - - - - - -
s1 - cer - - - - - - -
s2 - - cer - - - - - -
s3 suc1 dev - - - - - - -
s4 dev suc2 dev - - - - - -
s5 - dev suc1 - - - - - -
s6 - - - suc1 dev - - - -
s7 - - - dev suc2 dev - - -
s8 - - - - - - - - -

Table B.9: Transition matrix North.

122

s0 s1 s2 s3 s4 s5 s6 s7 s8

s0 - suc1 - - dev - - - -
s1 - - suc1 - - dev - - -
s2 - - cer - - - - - -
s3 - dev - - suc2 - - dev -
s4 - - dev - - suc2 - - dev
s5 - - - - - cer - - -
s6 - - - - dev - - suc1 -
s7 - - - - - dev - - suc1
s8 - - - - - - - - -

Table B.10: Transition matrix East.

s0 s1 s2 s3 s4 s5 s6 s7 s8

s0 - - - suc1 dev - - - -
s1 - - - dev suc2 dev - - -
s2 - - - - dev suc1 - - -
s3 - - - - - - suc1 dev -
s4 - - - - - - dev suc2 dev
s5 - - - - - - - dev suc1
s6 - - - - - - cer - -
s7 - - - - - - - cer -
s8 - - - - - - - - -

Table B.11: Transition matrix South.

s0 s1 s2 s3 s4 s5 s6 s7 s8

s0 cer - - - - - - - -
s1 suc1 - - dev - - - - -
s2 - suc1 - - dev - - - -
s3 - - - cer - - - - -
s4 dev - - suc2 - - dev - -
s5 - dev - - suc2 - - dev -
s6 - - - - - - cer - -
s7 - - - dev - - suc1 - -
s8 - - - - - - - - -

Table B.12: Transition matrix West.

123

s0 s1 s2 s3 s4 s5 s6 s7 s8

s0 - - - - - - - - -
s1 - - - - - - - - -
s2 - - - - - - - - -
s3 - - - - - - - - -
s4 - - - - - - - - -
s5 - - - - - - - - -
s6 - - - - - - - - -
s7 - - - - - - - - -
s8 - - - - - - - - cer

Table B.13: Transition matrix Nothing.

Initial belief:
b0: {s0 7→ [0.8, 0.8], s2 7→ [0.1, 0.1], s6 7→ [0.1, 0.1]}

124

	Introduction
	Related Work
	Preliminaries
	Notation
	Gradient and Hessian
	Optimization problems
	Convexity
	Convex polytopes

	Formal models
	Running example
	Markov Decision Processes
	Policies
	Example

	Partially Observability
	Belief
	Policies
	Example

	Model uncertainty
	Uncertain MDPs
	Uncertain POMDPs
	Model assumptions

	Underlying belief model for uPOMDPs
	Uncertain belief state
	Definition
	Interchangeable parts
	Horizon

	Uncertain belief update
	Belief uncertainty intervals
	Information loss
	Belief distribution constraints
	Correctness of the uncertain belief update function

	Uncertain belief state transitions
	Correctness of the uncertain belief state transition function

	Uncertain rewards
	Correctness of the uncertain reward function

	Correctness of the belief uMDP
	Example
	Benefits of the belief uMDP

	Solving and approximating the optimization problems
	Overview of the feasible sets
	Optimizing over an uncertain belief state
	Optimizing over the uncertain state transition function
	Combining the feasible sets

	Overview of the optimization problems
	Solving linear programs
	Solving and approximating quadratic programs
	Independent transitions

	Approximating quadratic fractional programs
	Full decoupling
	Partial decoupling

	Random sampling
	Two-phase Succesive Linear Programming Algorithm
	Evaluation of the approximations

	Numerical experiments
	Implementation
	Problem descriptions
	Cheese maze
	Tiger problem
	Grid-world robot
	Aircraft

	Experiments
	Results
	Base versions
	The effect of increased uncertainty
	The effect of increased size

	Discussion
	Conclusions
	Proofs of non-convexity
	Non-convexity of quadratic uncertain transition function
	Non-convexity of quadratic fractional belief uncertainty interval function
	Non-convexity of quadratic fractional belief contribution function
	Non-convexity of quadratic fractional belief normalization function
	Non-convexity of quadratic belief uncertainty interval sub-functions
	Numerator
	Denominator

	Non-convexity of quadratic belief contribution sub-functions
	Numerator
	Denominator

	Non-convexity of quadratic belief normalization sub-functions
	Numerator
	Denominator

	Problem data
	Cheese maze
	Tiger problem
	Grid-world robot

